Phonon transport across rough AlGaN/GaN interfaces with varying Al–Ga atomic ratios

宽禁带半导体 材料科学 声子 异质结 氮化镓 表面光洁度 外延 凝聚态物理 光电子学 热导率 表面粗糙度 纳米技术 复合材料 物理 图层(电子)
作者
Chao Yang,Jian Wang,Zhiqiang Li,Linhua Liu,Zhiwei Fu,Jia‐Yue Yang
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:124 (6)
标识
DOI:10.1063/5.0193544
摘要

Exploring interfacial thermal transport of a heterojunction interface is crucial to achieving advanced thermal management for gallium nitride-based high electron mobility transistor devices. The current research primarily focuses on material enhancements and microstructure design at the interfaces of epitaxial layers, buffer layers, and substrates, such as the GaN/SiC interface and GaN/AlN interface. Yet, the influence of different concentrations of Al/Ga atoms and interface roughness on the interfacial thermal conductance (ITC) of AlGaN/GaN interface, the closest interface to the hot spot, is still poorly understood. Herein, we focus on the rough AlGaN/GaN interface and evaluate the changes in ITC under different Al–Ga atomic concentrations and interface roughness using atomistic simulations. When the interface is completely smooth and AlGaN and GaN are arranged according to common polarization characteristic structures, the ITC gradually increases as the proportion of Al atoms decreases. When the proportion of Al atoms is reduced to 20%–30%, the impact of the interface structure on heat transfer is almost negligible. For interface models with different roughness levels, as the interface roughness increases, the ITC drops from 735.09 MW m−2 K−1 (smooth interface) to 469.47 MW m−2 K−1 by 36.13%. The decrease in ITC is attributed to phonon localization induced by rough interfaces. The phonon modes at the interface are significantly different from those in bulk materials. The degree of phonon localization is most pronounced in the frequency range that contributes significantly to heat flux. This work provides valuable physical insights into understanding the thermal transfer behaviors across the rough AlGaN/GaN interfaces.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xft发布了新的文献求助10
1秒前
1秒前
DUUUYY发布了新的文献求助10
1秒前
2秒前
2秒前
迟大猫应助科研通管家采纳,获得10
2秒前
小飞七应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
3秒前
喜悦中道应助科研通管家采纳,获得10
3秒前
科研通AI5应助科研通管家采纳,获得10
3秒前
3秒前
领导范儿应助科研通管家采纳,获得10
3秒前
深情安青应助科研通管家采纳,获得10
3秒前
谷粱发布了新的文献求助10
3秒前
4秒前
Devoted完成签到,获得积分20
4秒前
科研通AI5应助熊猫盖浇饭采纳,获得10
5秒前
RJFENG发布了新的文献求助10
5秒前
5秒前
5秒前
vv发布了新的文献求助10
5秒前
wanci应助洗澡记得戴浴帽采纳,获得10
7秒前
7秒前
123发布了新的文献求助10
7秒前
8秒前
科研通AI5应助Pinocchior采纳,获得80
9秒前
亮星发布了新的文献求助10
10秒前
10秒前
10秒前
完美世界应助会飞的野马采纳,获得10
11秒前
科研通AI2S应助爱大美采纳,获得10
11秒前
Nicole发布了新的文献求助10
11秒前
鲸鱼完成签到,获得积分10
11秒前
酷波er应助DAYDAY采纳,获得10
12秒前
yalin完成签到,获得积分10
12秒前
13秒前
小马甲应助1b采纳,获得10
13秒前
Nefelibata完成签到,获得积分10
15秒前
能干的小海豚完成签到,获得积分10
15秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543600
求助须知:如何正确求助?哪些是违规求助? 3120949
关于积分的说明 9344906
捐赠科研通 2818967
什么是DOI,文献DOI怎么找? 1549876
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126