CT image restoration method via total variation and L 0 smoothing filter

平滑的 图像复原 滤波器(信号处理) 变化(天文学) 图像(数学) 数学 计算机视觉 图像处理 物理 核医学 算法 统计 计算机科学 医学 天体物理学
作者
Hongcheng Yin,Xianyun Li,Li Zhi,Wei Peng,Cheng-Xiang Wang,Wei Yu
出处
期刊:Journal of Inverse and Ill-posed Problems [De Gruyter]
标识
DOI:10.1515/jiip-2023-0052
摘要

Abstract In X-ray CT imaging, there are some cases where the obtained CT images have serious ring artifacts and noise, and these degraded CT images seriously affect the quality of clinical diagnosis. Thus, developing an effective method that can simultaneously suppress ring artifacts and noise is of great importance. Total variation (TV) is a famous prior regularization for image denoising in the image processing field, however, for degraded CT images, it can suppress the noise but fail to reduce the ring artifacts. To address this issue, the L 0 L_{0} smoothing filter is incorporated with TV prior for CT ring artifacts and noise removal problem where the problem is transformed into several optimization sub-problems which are iteratively solved. The experiments demonstrate that the ring artifacts and noise presented in the CT image can be effectively suppressed by the proposed method and meanwhile the detailed features such as edge structure can be well preserved. As the superiority of TV and L 0 L_{0} smoothing filters are fully utilized, the performance of the proposed method is better than the existing methods such as the TV-based method and L 0 L_{0} -based method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
BA1发布了新的文献求助10
3秒前
3秒前
4秒前
5秒前
7秒前
7秒前
cinn完成签到 ,获得积分10
7秒前
Kyrie发布了新的文献求助10
7秒前
sekidesu发布了新的文献求助10
9秒前
10秒前
我是谁发布了新的文献求助30
11秒前
独特的敏发布了新的文献求助10
11秒前
11秒前
Y123发布了新的文献求助10
12秒前
加油呀发布了新的文献求助10
13秒前
13秒前
13秒前
Akim应助清秀面包采纳,获得10
14秒前
14秒前
15秒前
mmm发布了新的文献求助10
15秒前
飞快的小懒猪完成签到 ,获得积分10
16秒前
17秒前
18秒前
19秒前
嘻嘻梦发布了新的文献求助10
19秒前
19秒前
19秒前
独特的敏完成签到,获得积分10
20秒前
开朗寇发布了新的文献求助10
20秒前
20秒前
研友_ZragOn发布了新的文献求助30
22秒前
库里强发布了新的文献求助10
22秒前
jianning发布了新的文献求助10
22秒前
三江完成签到,获得积分10
22秒前
a雪橙发布了新的文献求助10
24秒前
klay777完成签到,获得积分10
25秒前
25秒前
26秒前
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Cognitive Paradigms in Knowledge Organisation 1000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304