Community preserving adaptive graph convolutional networks for link prediction in attributed networks

计算机科学 节点(物理) 链接(几何体) 保险丝(电气) 图形 嵌入 数据挖掘 复杂网络 人工智能 机器学习 理论计算机科学 计算机网络 万维网 电气工程 结构工程 工程类
作者
Chaobo He,Junwei Cheng,Xiang Fei,Yu Weng,Yulong Zheng,Yong Tang
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:272: 110589-110589 被引量:7
标识
DOI:10.1016/j.knosys.2023.110589
摘要

Link prediction in attributed networks has attracted increasing attention recently due to its valuable real-world applications. Various related methods have been proposed, but most of them cannot effectively utilize community structure, neither can they well fuse attribute information and link information to improve the performance. Inspired by our empirical observations on how community structure affects the generation of links, we propose a novel Community Preserving Adaptive Graph Convolutional Networks (CPAGCN) method to tackle the link prediction task in attributed networks. Specifically, CPAGCN is composed of two core modules: network embedding and link prediction. Network embedding module utilizes AGCN to seamlessly fuse link information and attribute information to obtain node representations, which are simultaneously driven to preserve community structure via an appropriate community detection model. Taking these node representations as the input, link prediction module applies multilayer perception (MLP) to directly learn the prediction scores for potential links. Through combining the graph reconstruction loss with the prediction loss to train AGCN and MLP jointly, CPAGCN can learn node representations that are more beneficial to predicting links. To verify the effectiveness of CPAGCN, we conduct extensive experiments on six real-world attributed networks. The results demonstrate that CPAGCN performs better than several strong competitors in link prediction. The source code is available at https://github.com/GDM-SCNU/CPAGCN.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
慕青应助科研通管家采纳,获得10
刚刚
迟大猫应助科研通管家采纳,获得10
刚刚
Lingdongmei应助科研通管家采纳,获得10
刚刚
迟大猫应助科研通管家采纳,获得10
刚刚
香蕉觅云应助科研通管家采纳,获得10
刚刚
Jasper应助科研通管家采纳,获得30
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
CodeCraft应助舒心的南珍采纳,获得10
刚刚
研友_VZG7GZ应助科研通管家采纳,获得10
刚刚
情怀应助科研通管家采纳,获得10
1秒前
脑洞疼应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Singularity应助科研通管家采纳,获得10
1秒前
迟大猫应助科研通管家采纳,获得80
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
124应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
迟大猫应助科研通管家采纳,获得10
1秒前
科研通AI5应助科研通管家采纳,获得10
1秒前
2秒前
2秒前
威武的皮卡丘完成签到,获得积分10
2秒前
黑粉头头完成签到,获得积分10
3秒前
满意以筠完成签到,获得积分10
6秒前
英俊的铭应助PeizeWu采纳,获得10
8秒前
oldblack完成签到,获得积分10
9秒前
10秒前
小陈完成签到,获得积分10
11秒前
13秒前
星期五完成签到 ,获得积分10
14秒前
14秒前
飞飞发布了新的文献求助10
15秒前
16秒前
天天快乐应助萱萱采纳,获得10
18秒前
寒士完成签到,获得积分10
18秒前
广旭完成签到 ,获得积分10
18秒前
ss发布了新的文献求助10
19秒前
坚强的严青完成签到,获得积分20
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672384
求助须知:如何正确求助?哪些是违规求助? 3228736
关于积分的说明 9781794
捐赠科研通 2939160
什么是DOI,文献DOI怎么找? 1610638
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174