阿利效应
数学
鞍结分岔
霍普夫分叉
分叉
极限(数学)
应用数学
理论(学习稳定性)
干草叉分叉
竞争模式
极限环
分叉理论的生物学应用
功能性反应
统计物理学
数学分析
非线性系统
捕食者
人口
计算机科学
物理
捕食
经济
古生物学
人口学
社会学
机器学习
微观经济学
利润(经济学)
生物
量子力学
作者
Danyang Li,Hua Liu,Xiaotao Han,Xiaofen Lin,Yumei Wei
标识
DOI:10.1142/s0218127422502480
摘要
In this paper, we introduce Allee effect and predator competition in the Bazykin’s model with Holling I functional response. Theoretically, we analyze the existence and stability of equilibria, and derive the existence conditions of saddle-node bifurcation and Hopf bifurcation. In addition, in order to determine the stability of limit cycles, we explicitly calculate the first Lyapunov coefficient and prove that the positive equilibrium is not a center, but a weak focus with a multiplicity of at least two. Therefore, the system has Hopf bifurcation and Bautin bifurcation with two limit cycles. Our results indicate that the Allee effect and predator competition lead to a series of complex dynamic phenomena. Finally, numerical simulation verifies the effectiveness of the theoretical results.
科研通智能强力驱动
Strongly Powered by AbleSci AI