Genomics‐based plant disease resistance prediction using machine learning

生物 机器学习 基因组学 疾病 植物抗病性 抗性(生态学) 选择(遗传算法) 特质 数量性状位点 人工智能 预测建模 精密医学 生物技术 计算生物学 基因组 计算机科学 遗传学 基因 生态学 医学 病理 程序设计语言
作者
Shriprabha R. Upadhyaya,Monica F. Danilevicz,Aria Dolatabadian,Ting Xiang Neik,Fangning Zhang,Hawlader Abdullah Al-Mamun,Mohammed Bennamoun,Jacqueline Batley,David Edwards
出处
期刊:Plant Pathology [Wiley]
标识
DOI:10.1111/ppa.13988
摘要

Abstract Plant disease outbreaks continuously challenge food security and sustainability. Traditional chemical methods used to treat diseases have environmental and health concerns, raising the need to enhance inherent plant disease resistance mechanisms. Traits, including disease resistance, can be linked to specific loci in the genome and identifying these markers facilitates targeted breeding approaches. Several methods, including genome‐wide association studies and genomic selection, have been used to identify important markers and select varieties with desirable traits. However, these traditional approaches may not fully capture the non‐linear characteristics of the effect of genomic variation on traits. Machine learning, known for its data‐mining abilities, offers an opportunity to enhance the accuracy of the existing trait association approaches. It has found applications in predicting various agronomic traits across several species. However, its use in disease resistance prediction remains limited. This review highlights the potential of machine learning as a complementary tool for predicting the genetic loci contributing to pathogen resistance. We provide an overview of traditional trait prediction methods, summarize machine‐learning applications, and address the challenges and opportunities associated with machine learning‐based crop disease resistance prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
方远锋发布了新的文献求助10
1秒前
共享精神应助林登万采纳,获得10
1秒前
hss发布了新的文献求助10
1秒前
山外山完成签到,获得积分10
2秒前
xioatudou发布了新的文献求助10
3秒前
bensonyang1013完成签到 ,获得积分10
4秒前
小下发布了新的文献求助20
4秒前
三山五岳发布了新的文献求助10
5秒前
邹葶发布了新的文献求助10
5秒前
5秒前
5秒前
小星发布了新的文献求助10
7秒前
充电宝应助煎熬日采纳,获得10
8秒前
Yian完成签到,获得积分10
8秒前
欣慰雪巧发布了新的文献求助10
8秒前
wanci应助妩媚的强炫采纳,获得30
9秒前
10秒前
未知发布了新的文献求助10
10秒前
高级丹药师完成签到 ,获得积分10
10秒前
高小羊完成签到,获得积分10
10秒前
ZYK完成签到,获得积分10
10秒前
流雨发布了新的文献求助10
10秒前
11秒前
三山五岳完成签到,获得积分20
11秒前
多优完成签到,获得积分10
12秒前
13秒前
14秒前
15秒前
15秒前
垚乐应助小静采纳,获得10
17秒前
小生完成签到,获得积分10
18秒前
韦以亦发布了新的文献求助10
18秒前
19秒前
情怀应助飞扬的刘海儿采纳,获得10
19秒前
19秒前
汉堡包应助WuYiHHH采纳,获得10
19秒前
123发布了新的文献求助30
21秒前
鲤鱼灵竹关注了科研通微信公众号
21秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916