Pavement Cracks Segmentation Algorithm Based on Conditional Generative Adversarial Network

鉴别器 分割 发电机(电路理论) 计算机科学 人工智能 图像(数学) 图像分割 计算机视觉 噪音(视频) 模式识别(心理学) 算法 探测器 功率(物理) 电信 物理 量子力学
作者
Jie Kang,Shujie Feng
出处
期刊:Sensors [Multidisciplinary Digital Publishing Institute]
卷期号:22 (21): 8478-8478 被引量:5
标识
DOI:10.3390/s22218478
摘要

In long-term use, cracks will show up on the road, delivering monetary losses and security hazards. However, the road surface with a complex background has various disturbances, so it is challenging to segment the cracks accurately. Therefore, we propose a pavement cracks segmentation method based on a conditional generative adversarial network in this paper. U-net3+ with the attention module is used in the generator to generate segmented images for pavement cracks. The attention module highlights crack features and suppresses noise features from two dimensions of channel and space, then fuses the features generated by these two dimensions to obtain more complementary crack features. The original image is stitched with the manual annotation of cracks and the generated segmented image as the input of the discriminator. The PatchGAN method is used in the discriminator. Moreover, we propose a weighted hybrid loss function to improve the segmentation accuracy by exploiting the difference between the generated and annotated images. Through alternating gaming training of the generator and the discriminator, the segmentation image of cracks generated by the generator is very close to the actual segmentation image, thus achieving the effect of crack detection. Our experimental results using the Crack500 datasets show that the proposed method can eliminate various disturbances and achieve superior performance in pavement crack detection with complex backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
飞先生发布了新的文献求助10
1秒前
2秒前
虚心的静枫完成签到,获得积分10
2秒前
烟花应助Lily采纳,获得10
2秒前
你香发布了新的文献求助10
2秒前
esther完成签到,获得积分10
4秒前
xzh给xzh的求助进行了留言
5秒前
5秒前
9秒前
思源应助yd采纳,获得20
9秒前
传统的可燕完成签到,获得积分10
10秒前
忧郁的高山完成签到,获得积分10
10秒前
龅牙苏发布了新的文献求助20
11秒前
11秒前
你香完成签到,获得积分10
12秒前
12秒前
12秒前
小何完成签到,获得积分10
12秒前
13秒前
拼搏宛儿完成签到,获得积分10
14秒前
脆脆鲨鱼发布了新的文献求助10
14秒前
15秒前
17秒前
icerell完成签到,获得积分10
17秒前
17秒前
djiwisksk66应助Echo采纳,获得10
17秒前
wuwenyu完成签到,获得积分10
17秒前
十四完成签到 ,获得积分10
18秒前
19秒前
NexusExplorer应助白马非马采纳,获得10
20秒前
脆脆鲨鱼完成签到,获得积分10
21秒前
21秒前
8R60d8应助洁净的钢铁侠采纳,获得20
21秒前
8R60d8应助洁净的钢铁侠采纳,获得10
21秒前
yd发布了新的文献求助20
22秒前
英姑应助安详忆梅采纳,获得10
23秒前
天天快乐应助研友_shuang采纳,获得10
25秒前
RC_Wang发布了新的文献求助10
26秒前
迟到虞姬发布了新的文献求助10
27秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952383
求助须知:如何正确求助?哪些是违规求助? 3497737
关于积分的说明 11088744
捐赠科研通 3228363
什么是DOI,文献DOI怎么找? 1784838
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303