Pavement Cracks Segmentation Algorithm Based on Conditional Generative Adversarial Network

鉴别器 分割 发电机(电路理论) 计算机科学 人工智能 图像(数学) 图像分割 计算机视觉 噪音(视频) 模式识别(心理学) 算法 探测器 功率(物理) 量子力学 电信 物理
作者
Jie Kang,Shujie Feng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8478-8478 被引量:5
标识
DOI:10.3390/s22218478
摘要

In long-term use, cracks will show up on the road, delivering monetary losses and security hazards. However, the road surface with a complex background has various disturbances, so it is challenging to segment the cracks accurately. Therefore, we propose a pavement cracks segmentation method based on a conditional generative adversarial network in this paper. U-net3+ with the attention module is used in the generator to generate segmented images for pavement cracks. The attention module highlights crack features and suppresses noise features from two dimensions of channel and space, then fuses the features generated by these two dimensions to obtain more complementary crack features. The original image is stitched with the manual annotation of cracks and the generated segmented image as the input of the discriminator. The PatchGAN method is used in the discriminator. Moreover, we propose a weighted hybrid loss function to improve the segmentation accuracy by exploiting the difference between the generated and annotated images. Through alternating gaming training of the generator and the discriminator, the segmentation image of cracks generated by the generator is very close to the actual segmentation image, thus achieving the effect of crack detection. Our experimental results using the Crack500 datasets show that the proposed method can eliminate various disturbances and achieve superior performance in pavement crack detection with complex backgrounds.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形的西牛完成签到,获得积分10
刚刚
gghh完成签到 ,获得积分10
1秒前
hhh发布了新的文献求助10
2秒前
2秒前
彩色的冷梅完成签到 ,获得积分10
3秒前
悦耳玲完成签到 ,获得积分10
8秒前
共享精神应助wang123ye采纳,获得10
8秒前
8秒前
9秒前
orixero应助钢钢采纳,获得10
11秒前
lj完成签到 ,获得积分10
11秒前
13秒前
SciGPT应助活力灵波采纳,获得10
13秒前
13秒前
yyl发布了新的文献求助10
14秒前
落寞怜雪发布了新的文献求助10
15秒前
16秒前
mxl发布了新的文献求助10
17秒前
Hoooo...发布了新的文献求助10
18秒前
Nacy完成签到 ,获得积分10
18秒前
18秒前
hhh完成签到,获得积分20
18秒前
zhengzhao发布了新的文献求助10
20秒前
赘婿应助蘑菇采纳,获得10
20秒前
多金完成签到,获得积分10
21秒前
爆米花应助Hoooo...采纳,获得10
21秒前
香蕉觅云应助机智楼房采纳,获得10
22秒前
22秒前
25秒前
25秒前
26秒前
26秒前
热情的谷蓝完成签到,获得积分20
27秒前
guyong完成签到,获得积分10
27秒前
大喜发布了新的文献求助30
28秒前
29秒前
闫伊森完成签到,获得积分10
29秒前
Royal发布了新的文献求助10
29秒前
nanfeng完成签到 ,获得积分10
30秒前
狗蛋儿发布了新的文献求助10
31秒前
高分求助中
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
Experimental research on the vibration of aviation elbow tube by 21~35 MPa fluid pressure pulsation 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3338542
求助须知:如何正确求助?哪些是违规求助? 2966732
关于积分的说明 8626376
捐赠科研通 2645929
什么是DOI,文献DOI怎么找? 1448923
科研通“疑难数据库(出版商)”最低求助积分说明 671298
邀请新用户注册赠送积分活动 660003