Pavement Cracks Segmentation Algorithm Based on Conditional Generative Adversarial Network

鉴别器 分割 发电机(电路理论) 计算机科学 人工智能 图像(数学) 图像分割 计算机视觉 噪音(视频) 模式识别(心理学) 算法 探测器 功率(物理) 电信 物理 量子力学
作者
Jie Kang,Shujie Feng
出处
期刊:Sensors [MDPI AG]
卷期号:22 (21): 8478-8478 被引量:5
标识
DOI:10.3390/s22218478
摘要

In long-term use, cracks will show up on the road, delivering monetary losses and security hazards. However, the road surface with a complex background has various disturbances, so it is challenging to segment the cracks accurately. Therefore, we propose a pavement cracks segmentation method based on a conditional generative adversarial network in this paper. U-net3+ with the attention module is used in the generator to generate segmented images for pavement cracks. The attention module highlights crack features and suppresses noise features from two dimensions of channel and space, then fuses the features generated by these two dimensions to obtain more complementary crack features. The original image is stitched with the manual annotation of cracks and the generated segmented image as the input of the discriminator. The PatchGAN method is used in the discriminator. Moreover, we propose a weighted hybrid loss function to improve the segmentation accuracy by exploiting the difference between the generated and annotated images. Through alternating gaming training of the generator and the discriminator, the segmentation image of cracks generated by the generator is very close to the actual segmentation image, thus achieving the effect of crack detection. Our experimental results using the Crack500 datasets show that the proposed method can eliminate various disturbances and achieve superior performance in pavement crack detection with complex backgrounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
嘎嘎顺利完成签到,获得积分10
刚刚
坤坤发布了新的文献求助10
1秒前
XXF发布了新的文献求助10
1秒前
wubobo完成签到,获得积分10
1秒前
2秒前
思源应助HopeStar采纳,获得10
2秒前
3秒前
zqh完成签到,获得积分20
4秒前
4秒前
嘎嘎顺利发布了新的文献求助10
4秒前
按住心动完成签到,获得积分10
5秒前
星辰大海应助屁王采纳,获得10
5秒前
Owen应助彬彬采纳,获得10
6秒前
6秒前
Jasen完成签到,获得积分10
6秒前
轻轻地呼吸完成签到,获得积分10
6秒前
6秒前
明天更好发布了新的文献求助10
6秒前
7秒前
猪血糕yu完成签到,获得积分10
7秒前
通~发布了新的文献求助10
7秒前
8秒前
科研小垃圾完成签到,获得积分10
8秒前
9秒前
生动的煎蛋完成签到,获得积分10
9秒前
NexusExplorer应助marinemiao采纳,获得10
9秒前
CXS完成签到,获得积分10
10秒前
10秒前
10秒前
小郭完成签到,获得积分10
10秒前
10秒前
123发布了新的文献求助10
11秒前
NN123完成签到 ,获得积分10
11秒前
FFFFFFF应助艺玲采纳,获得10
12秒前
袁访天发布了新的文献求助10
12秒前
辇道增七完成签到,获得积分10
12秒前
12秒前
幽默的太阳完成签到 ,获得积分10
13秒前
13秒前
Nininni完成签到,获得积分10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740