Analyzing relationships between latent topics in autonomous vehicle crash narratives and crash severity using natural language processing techniques and explainable XGBoost

撞车 叙述的 计算机科学 自然语言处理 人工智能 自然(考古学) 心理学 语言学 历史 程序设计语言 哲学 考古
作者
Pei Li,Sikai Chen,Lishengsa Yue,Yuan Xu,David A. Noyce
出处
期刊:Accident Analysis & Prevention [Elsevier]
卷期号:203: 107605-107605
标识
DOI:10.1016/j.aap.2024.107605
摘要

Safety is one of the most essential considerations when evaluating the performance of autonomous vehicles (AVs). Real-world AV data, including trajectory, detection, and crash data, are becoming increasingly popular as they provide possibilities for a realistic evaluation of AVs' performance. While substantial research was conducted to estimate general crash patterns utilizing structured AV crash data, a comprehensive exploration of AV crash narratives remains limited. These narratives contain latent information about AV crashes that can further the understanding of AV safety. Therefore, this study utilizes the Structural Topic Model (STM), a natural language processing technique, to extract latent topics from unstructured AV crash narratives while incorporating crash metadata (i.e., the severity and year of crashes). In total, 15 topics are identified and are further divided into behavior-related, party-related, location-related, and general topics. Using these topics, AV crashes can be systematically described and clustered. Results from the STM suggest that AVs' abilities to interact with vulnerable road users (VRUs) and react to lane-change behavior need to be further improved. Moreover, an XGBoost model is developed to investigate the relationships between the topics and crash severity. The model significantly outperforms existing studies in terms of accuracy, suggesting that the extracted topics are closely related to crash severity. Results from interpreting the model indicate that topics containing information about crash severity and VRUs have significant impacts on the model's output, which are suggested to be included in future AV crash reporting.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
七米日光发布了新的文献求助10
1秒前
魔幻高烽发布了新的文献求助10
2秒前
Sofia完成签到,获得积分10
3秒前
4秒前
露露完成签到,获得积分10
5秒前
5秒前
刘晓宇发布了新的文献求助10
5秒前
6秒前
科研劝退完成签到,获得积分10
7秒前
顺顺安完成签到,获得积分10
7秒前
xfye完成签到,获得积分10
8秒前
科研通AI2S应助枝桠采纳,获得10
9秒前
9秒前
诚心的剑完成签到,获得积分10
9秒前
9秒前
平淡忻应助Andy采纳,获得10
10秒前
李大刚完成签到 ,获得积分10
10秒前
Linyi发布了新的文献求助10
10秒前
毓凡发布了新的文献求助10
11秒前
12秒前
AAA完成签到,获得积分10
12秒前
bkagyin应助欣喜的冥王星采纳,获得10
14秒前
落寞怀柔发布了新的文献求助10
14秒前
liu bo完成签到,获得积分10
14秒前
myl完成签到,获得积分10
16秒前
无何有之乡完成签到,获得积分10
18秒前
爱笑的访梦完成签到,获得积分10
19秒前
梅子完成签到,获得积分10
19秒前
21秒前
长孙归尘完成签到 ,获得积分10
21秒前
heyan完成签到,获得积分10
21秒前
NexusExplorer应助整齐的玫瑰采纳,获得10
22秒前
绿兔子完成签到,获得积分10
23秒前
稳稳完成签到,获得积分10
23秒前
寒冷妙梦完成签到,获得积分10
24秒前
25秒前
仁爱发卡发布了新的文献求助10
26秒前
老肖应助哭泣的砖家采纳,获得10
26秒前
27秒前
29秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011