模型预测控制
弹道
机械臂
机器人
控制理论(社会学)
参数统计
机器人末端执行器
计算机科学
轨迹优化
职位(财务)
运动规划
过程(计算)
人工智能
工程类
控制工程
控制(管理)
数学
物理
操作系统
经济
统计
财务
天文
作者
Tobias Gold,Ralf Romer,Andreas Völz,Knut Graichen
标识
DOI:10.23919/acc53348.2022.9867380
摘要
This paper presents a model predictive control (MPC)-based planning and control approach for catching objects in flight with a robotic arm. The core of the approach is to combine the three elementary tasks of the catching process, namely predicting the flight trajectory, determining the catching pose and the motion planning and control of the robot in one optimization problem. Thereto, a time-optimal problem formulation is chosen with additional robot-specific inequality constraints. Based on a parametric description of the flight parabola, terminal equality constraints are defined ensuring that the end effector position lies on the flight parabola with an orientation in tangential direction of the trajectory. The approach is successfully applied in simulation and experiments in real-time for a 7-degrees-of-freedom (DOF) robot arm with the nonlinear model predictive control toolbox GRAMPC.
科研通智能强力驱动
Strongly Powered by AbleSci AI