A multi-point collaborative DDoS defense mechanism for IIoT environment

服务拒绝攻击 计算机科学 计算机安全 鉴定(生物学) 机制(生物学) 信息共享 互联网 万维网 哲学 认识论 植物 生物
作者
Hongcheng Huang,Peixin Ye,Min Hu,Jun Wu
出处
期刊:Digital Communications and Networks [Elsevier]
卷期号:9 (2): 590-601 被引量:4
标识
DOI:10.1016/j.dcan.2022.04.008
摘要

Nowadays, a large number of intelligent devices involved in the Industrial Internet of Things (IIoT) environment are posing unprecedented cybersecurity challenges. Due to the limited budget for security protection, the IIoT devices are vulnerable and easily compromised to launch Distributed Denial-of-Service (DDoS) attacks, resulting in disastrous results. Unfortunately, considering the particularity of the IIoT environment, most of the defense solutions in traditional networks cannot be directly applied to IIoT with acceptable security performance. Therefore, in this work, we propose a multi-point collaborative defense mechanism against DDoS attacks for IIoT. Specifically, for the single point DDoS defense, we design an edge-centric mechanism termed EdgeDefense for the detection, identification, classification, and mitigation of DDoS attacks and the generation of defense information. For the practical multi-point scenario, we propose a collaborative defense model against DDoS attacks to securely share the defense information across the network through the blockchain. Besides, a fast defense information sharing mechanism is designed to reduce the delay of defense information sharing and provide a responsive cybersecurity guarantee. The simulation results indicate that the identification and classification performance of the two machine learning models designed for EdgeDefense are better than those of the state-of-the-art baseline models, and therefore EdgeDefense can defend against DDoS attacks effectively. The results also verify that the proposed fast sharing mechanism can reduce the propagation delay of the defense information blocks effectively, thereby improving the responsiveness of the multi-point collaborative DDoS defense.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Long完成签到,获得积分10
1秒前
北城发布了新的文献求助10
1秒前
11完成签到,获得积分10
1秒前
文茵完成签到,获得积分10
1秒前
贰拾发布了新的文献求助10
1秒前
调研昵称发布了新的文献求助10
2秒前
超哥发布了新的文献求助10
2秒前
卡卡卡发布了新的文献求助10
2秒前
vapour关注了科研通微信公众号
2秒前
3秒前
隐形曼青应助Antil采纳,获得30
3秒前
何采文发布了新的文献求助10
3秒前
丘比特应助sxm采纳,获得10
3秒前
去微软发布了新的文献求助10
4秒前
无名花生完成签到 ,获得积分10
6秒前
linghanlan完成签到,获得积分10
6秒前
北城完成签到,获得积分20
7秒前
卡卡完成签到,获得积分20
7秒前
teamguichu完成签到,获得积分20
7秒前
情怀应助摆烂王子采纳,获得10
7秒前
鲜艳的从波完成签到,获得积分10
7秒前
8秒前
Lei完成签到,获得积分10
8秒前
8秒前
香蕉觅云应助典雅以南采纳,获得30
8秒前
苏卿应助gujianhua采纳,获得10
10秒前
Charail完成签到,获得积分20
10秒前
简单十三发布了新的文献求助10
11秒前
11秒前
Thunnus001完成签到,获得积分10
12秒前
过分动真发布了新的文献求助10
12秒前
搜集达人应助JOY采纳,获得10
12秒前
小张同学完成签到,获得积分10
12秒前
14秒前
hahhh7发布了新的文献求助10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
拼搏向上发布了新的文献求助10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得10
15秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155565
求助须知:如何正确求助?哪些是违规求助? 2806679
关于积分的说明 7870461
捐赠科研通 2465012
什么是DOI,文献DOI怎么找? 1312079
科研通“疑难数据库(出版商)”最低求助积分说明 629860
版权声明 601892