Difference analysis of musculation and estimation of sEMG-to-force in process of increasing force and decreasing force

等长运动 信号(编程语言) 计算机科学 肌电图 收缩(语法) 光谱图 模式识别(心理学) 人工智能 物理医学与康复 医学 物理疗法 内科学 程序设计语言
作者
Yanxia Wu,Shili Liang,Zekun Chen,Xiaokang Qiao,Yong Ma
出处
期刊:Expert Systems With Applications [Elsevier]
卷期号:228: 120445-120445 被引量:2
标识
DOI:10.1016/j.eswa.2023.120445
摘要

The movement of the human limb is driven by muscle contraction. Surface electromyography (sEMG) is a weak bioelectric activity generated during muscle contraction, which reflects information regarding muscle activation. The increasing force and the decreasing force are reverse processes. Investigating the difference in musculation between the two processes and establishing an input–output model between sEMG and force can clarify the biodynamics mechanism of the human body. In the study, we try to find the truth about the difference in musculation using sEMG signal in the process of increasing and decreasing force, and create a model of the relationship between sEMG and force. A synchronous data acquisition device is used to collect force and sEMG signals, including the raw sEMG signal and its envelope signal. A new method for extracting the feature of the sEMG signal based on the spectrogram is introduced. Up to sixteen features are extracted from the sEMG signal, and their performances are evaluated. The experimental results indicate that sliding mean filtering can significantly improve feature performance. A processing means of isometric force and sEMG feature is proposed. Difference in musculation about force-increasing and force-decreasing is detailedly analyzed by statistical T-test. We come to the conclusion that the sEMG signal evoked via musculation is not exactly the same in the two processes, with a more significant difference when the muscle contraction strength is weaker, and a less significant difference when the muscle contraction strength is stronger. Finally, five regression models are used for sEMG-to-force estimation, and their performances are compared separately. The experimental results show that the DNN exhibits the best performance, achieving a RMSE of 12.782 and a R2 of 0.911.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ann发布了新的文献求助10
刚刚
ZZXX发布了新的文献求助10
1秒前
Seaman完成签到,获得积分10
1秒前
2秒前
3秒前
今后应助打死小胖纸采纳,获得10
4秒前
5秒前
灵巧红牛完成签到,获得积分10
5秒前
娇娇完成签到,获得积分10
6秒前
WAN完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
饱满苞络应助lllll采纳,获得10
8秒前
8秒前
营养小杨发布了新的文献求助10
9秒前
x111发布了新的文献求助10
9秒前
10秒前
10秒前
爆米花应助热情语柔采纳,获得10
10秒前
风云发布了新的文献求助10
11秒前
11秒前
11秒前
NexusExplorer应助冯哒哒采纳,获得10
11秒前
bug发布了新的文献求助10
12秒前
haobhaobhaob发布了新的文献求助10
13秒前
13秒前
寒冷的如南完成签到,获得积分10
14秒前
充电宝应助周同学采纳,获得10
15秒前
Ann完成签到,获得积分10
15秒前
哈理老萝卜应助YRHM采纳,获得50
15秒前
于小方发布了新的文献求助10
15秒前
桐桐应助吃肯德基采纳,获得10
15秒前
Seaman发布了新的文献求助10
16秒前
16秒前
16秒前
2959340641发布了新的文献求助10
16秒前
落后寒凡发布了新的文献求助30
17秒前
正直美女完成签到 ,获得积分10
18秒前
18秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543107
求助须知:如何正确求助?哪些是违规求助? 3120526
关于积分的说明 9342707
捐赠科研通 2818521
什么是DOI,文献DOI怎么找? 1549648
邀请新用户注册赠送积分活动 722213
科研通“疑难数据库(出版商)”最低求助积分说明 713049