Optimal multi-period crop procurement and distribution policy with minimum support prices

补贴 公共分配系统 收入 采购 业务 政府(语言学) 环境经济学 经济 运筹学 计算机科学 农业 财务 粮食安全 营销 工程类 生物 哲学 语言学 市场经济 生态学
作者
Prashant Chintapalli
出处
期刊:Socio-economic Planning Sciences [Elsevier]
卷期号:89: 101671-101671
标识
DOI:10.1016/j.seps.2023.101671
摘要

Governments of many developing countries offer minimum earnings to farmers through crop Minimum support price (MSP), which guarantees minimum revenue to farmers who cultivate the crop. The crop procured by a government through MSP is later distributed among poor consumers at subsidized prices through public distribution systems (PDS). Thus, governments combine MSP with the PDS scheme to simultaneously ensure farmers’ welfare and tackle poor consumers’ hunger and nutrition problems. However, improper implementation of the schemes causes burgeoning stockpiles in government warehouses, which eventually causes a substantial increase in operational costs and food wastage. In this paper, we characterize the optimal joint MSP and PDS policy over a finite horizon for two objectives: (i) minimize the total cost and (ii) maximize the net value after accounting for farmers’ benefit. Using the data over 15 years, we show that the optimal policy can substantially reduce operational costs (by about 85%) and improve the net value (by about 1.8 trillion INR). We use a linearly constrained quadratic stochastic dynamic program formulation to model the problem. We derive a simple and efficient joint MSP and PDS operational policy that provides the optimal quantity of crop that should be disbursed through PDS in the current period and the optimal MSP that should be announced for the subsequent period. Our policy is easy to compute and implement and can help policymakers efficiently implement MSP and PDS programs jointly. Our model provides a basic framework to solve the joint MSP and PDS problem and can be modified to incorporate other aspects through additional constraints.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
keyantong完成签到 ,获得积分10
2秒前
booshu完成签到,获得积分10
3秒前
jy发布了新的文献求助10
4秒前
朴斓完成签到,获得积分10
4秒前
科研通AI5应助魏伯安采纳,获得10
7秒前
哈密哈密完成签到,获得积分10
7秒前
7秒前
Ava应助浪迹天涯采纳,获得10
7秒前
8秒前
安南发布了新的文献求助10
8秒前
9秒前
healthy完成签到 ,获得积分10
9秒前
10秒前
刘大可完成签到,获得积分10
10秒前
13秒前
su发布了新的文献求助10
13秒前
rookie发布了新的文献求助10
14秒前
方勇飞发布了新的文献求助10
15秒前
郭菱香完成签到 ,获得积分20
15秒前
皮念寒完成签到,获得积分10
15秒前
顺其自然_666888完成签到,获得积分10
15秒前
16秒前
向上的小v完成签到 ,获得积分10
17秒前
17秒前
19秒前
酷酷紫蓝完成签到 ,获得积分10
19秒前
19秒前
方勇飞完成签到,获得积分10
19秒前
LYZ完成签到,获得积分10
19秒前
黄景滨完成签到 ,获得积分20
20秒前
20秒前
123456完成签到,获得积分20
20秒前
hkl1542完成签到,获得积分10
21秒前
21秒前
caohuijun发布了新的文献求助10
22秒前
杳鸢应助韦颖采纳,获得20
23秒前
23秒前
wshwx完成签到 ,获得积分10
23秒前
23秒前
魏伯安发布了新的文献求助10
24秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824