MoleMCL: a multi-level contrastive learning framework for molecular pre-training

计算机科学 特征(语言学) 编码器 人工智能 语义学(计算机科学) 代表(政治) 特征学习 图形 机器学习 理论计算机科学 自然语言处理 程序设计语言 哲学 语言学 政治 政治学 法学 操作系统
作者
Xinyi Zhang,Yanni Xu,Changzhi Jiang,Lian Shen,Xiangrong Liu
出处
期刊:Bioinformatics [Oxford University Press]
卷期号:40 (4) 被引量:2
标识
DOI:10.1093/bioinformatics/btae164
摘要

Abstract Motivation Molecular representation learning plays an indispensable role in crucial tasks such as property prediction and drug design. Despite the notable achievements of molecular pre-training models, current methods often fail to capture both the structural and feature semantics of molecular graphs. Moreover, while graph contrastive learning has unveiled new prospects, existing augmentation techniques often struggle to retain their core semantics. To overcome these limitations, we propose a gradient-compensated encoder parameter perturbation approach, ensuring efficient and stable feature augmentation. By merging enhancement strategies grounded in attribute masking and parameter perturbation, we introduce MoleMCL, a new MOLEcular pre-training model based on multi-level contrastive learning. Results Experimental results demonstrate that MoleMCL adeptly dissects the structure and feature semantics of molecular graphs, surpassing current state-of-the-art models in molecular prediction tasks, paving a novel avenue for molecular modeling. Availability and implementation The code and data underlying this work are available in GitHub at https://github.com/BioSequenceAnalysis/MoleMCL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jfeng完成签到,获得积分10
1秒前
JN完成签到,获得积分10
9秒前
忐忑的书桃完成签到 ,获得积分10
10秒前
qaplay完成签到 ,获得积分0
10秒前
友好语风完成签到,获得积分10
11秒前
CLTTTt完成签到,获得积分10
12秒前
yk完成签到,获得积分10
14秒前
甜美的初蓝完成签到 ,获得积分10
18秒前
早安完成签到 ,获得积分10
22秒前
初昀杭完成签到 ,获得积分10
26秒前
量子星尘发布了新的文献求助10
28秒前
LIU完成签到 ,获得积分10
28秒前
30秒前
nianshu完成签到 ,获得积分0
31秒前
starwan完成签到 ,获得积分10
32秒前
松松发布了新的文献求助20
32秒前
hooddy123459发布了新的文献求助10
33秒前
wenhuanwenxian完成签到 ,获得积分10
37秒前
happy完成签到 ,获得积分10
41秒前
拾壹完成签到,获得积分10
49秒前
雪花完成签到,获得积分10
51秒前
清风完成签到 ,获得积分10
51秒前
雪花发布了新的文献求助10
55秒前
秀丽笑容完成签到 ,获得积分10
59秒前
江湖应助聪慧芷巧采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Rjy完成签到 ,获得积分10
1分钟前
性感母蟑螂完成签到 ,获得积分10
1分钟前
ruochenzu完成签到,获得积分10
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
天道酬勤完成签到,获得积分10
1分钟前
1分钟前
仁爱的谷南完成签到,获得积分10
1分钟前
雯雯完成签到 ,获得积分10
1分钟前
一路有你完成签到 ,获得积分10
1分钟前
1分钟前
ruochenzu发布了新的文献求助10
1分钟前
1分钟前
wanghao完成签到 ,获得积分10
1分钟前
图图发布了新的文献求助10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022