亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Re-evaluation of Deep Learning Methods for Attributed Graph Clustering

计算机科学 聚类分析 图形 聚类系数 数据挖掘 图划分 水准点(测量) 人工智能 机器学习 理论计算机科学 大地测量学 地理
作者
Xinying Lai,Dingming Wu,Christian S. Jensen,Kezhong Lu
标识
DOI:10.1145/3583780.3614768
摘要

Attributed graph clustering aims to partition the nodes in a graph into groups such that the nodes in the same group are close in terms of graph proximity and also have similar attribute values. Recently, deep learning methods have achieved state-of-the-art clustering performance. However, the effectiveness of existing methods remains unclear due to two reasons. First, the datasets used for evaluation do not support fully the goal of attributed graph clustering. The category labels of nodes are only relevant to node attributes, and nodes with the same category label are often distant in the graph. Second, existing methods for the attributed graph clustering are complex and consist of several components. There is lack of comparisons of methods composed of different components from existing methods. This study proposes six benchmark datasets that support better the goal of attributed graph clustering and reports the performance of existing representative methods. Given that existing methods leave room for improvement on the proposed benchmark datasets, we systematically analyze five aspects of existing methods: encoded information, training networks, fusion mechanisms, loss functions, and clustering result generation. Based on these aspects, we decompose existing methods into modules and evaluate the performance of reconfigured methods based on these modules. According to the experimental results on the proposed benchmark datasets, we identify two promising configurations: (i) taking the attribute matrix as input to a graph convolutional network and (ii) layer-wise linear fusing deep neural network and graph attention network. And we also find that complex loss function fails to improve the clustering performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪凤完成签到 ,获得积分10
6秒前
M_vil发布了新的文献求助10
10秒前
xing完成签到,获得积分10
16秒前
华仔应助xing采纳,获得10
24秒前
25秒前
muliushang完成签到 ,获得积分10
27秒前
迅速的岩发布了新的文献求助10
32秒前
orixero应助M_vil采纳,获得30
39秒前
蛙蛙完成签到 ,获得积分10
40秒前
Yuan完成签到 ,获得积分10
40秒前
嘎嘣脆完成签到 ,获得积分10
42秒前
lngenuo发布了新的文献求助30
44秒前
笑点低的斑马完成签到,获得积分10
51秒前
小豆子完成签到 ,获得积分20
59秒前
1分钟前
xlxl发布了新的文献求助10
1分钟前
1分钟前
充电宝应助xlxl采纳,获得10
1分钟前
1分钟前
倾抚发布了新的文献求助10
1分钟前
1分钟前
大模型应助科研通管家采纳,获得10
1分钟前
在水一方应助annathd采纳,获得10
1分钟前
1分钟前
1分钟前
EthanChan完成签到,获得积分10
1分钟前
1分钟前
annathd发布了新的文献求助10
1分钟前
Zgrey完成签到 ,获得积分10
1分钟前
KYT完成签到,获得积分10
1分钟前
小蘑菇应助忧心的迎天采纳,获得10
1分钟前
qing_li完成签到,获得积分10
2分钟前
可了不得完成签到 ,获得积分10
2分钟前
wanci应助cj采纳,获得10
2分钟前
2分钟前
cj完成签到,获得积分10
2分钟前
cj发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634633
求助须知:如何正确求助?哪些是违规求助? 4731719
关于积分的说明 14988810
捐赠科研通 4792356
什么是DOI,文献DOI怎么找? 2559487
邀请新用户注册赠送积分活动 1519788
关于科研通互助平台的介绍 1479903