已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Re-evaluation of Deep Learning Methods for Attributed Graph Clustering

计算机科学 聚类分析 图形 聚类系数 数据挖掘 图划分 水准点(测量) 人工智能 机器学习 理论计算机科学 大地测量学 地理
作者
Xinying Lai,Dingming Wu,Christian S. Jensen,Kezhong Lu
标识
DOI:10.1145/3583780.3614768
摘要

Attributed graph clustering aims to partition the nodes in a graph into groups such that the nodes in the same group are close in terms of graph proximity and also have similar attribute values. Recently, deep learning methods have achieved state-of-the-art clustering performance. However, the effectiveness of existing methods remains unclear due to two reasons. First, the datasets used for evaluation do not support fully the goal of attributed graph clustering. The category labels of nodes are only relevant to node attributes, and nodes with the same category label are often distant in the graph. Second, existing methods for the attributed graph clustering are complex and consist of several components. There is lack of comparisons of methods composed of different components from existing methods. This study proposes six benchmark datasets that support better the goal of attributed graph clustering and reports the performance of existing representative methods. Given that existing methods leave room for improvement on the proposed benchmark datasets, we systematically analyze five aspects of existing methods: encoded information, training networks, fusion mechanisms, loss functions, and clustering result generation. Based on these aspects, we decompose existing methods into modules and evaluate the performance of reconfigured methods based on these modules. According to the experimental results on the proposed benchmark datasets, we identify two promising configurations: (i) taking the attribute matrix as input to a graph convolutional network and (ii) layer-wise linear fusing deep neural network and graph attention network. And we also find that complex loss function fails to improve the clustering performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Forever完成签到 ,获得积分10
刚刚
1秒前
程小柒完成签到 ,获得积分10
1秒前
chenchen发布了新的文献求助10
3秒前
YifanWang应助YangHuilin采纳,获得30
4秒前
康斯坦丁发布了新的文献求助10
5秒前
燕燕完成签到 ,获得积分10
6秒前
学者风范完成签到 ,获得积分10
7秒前
adu发布了新的文献求助10
7秒前
10秒前
吴开珍完成签到 ,获得积分10
13秒前
七叶花开完成签到 ,获得积分10
13秒前
达雨发布了新的文献求助10
13秒前
淡淡一德完成签到 ,获得积分10
14秒前
菠萝完成签到,获得积分20
15秒前
小马甲应助墨痕采纳,获得10
16秒前
Criminology34举报wtx19980528求助涉嫌违规
17秒前
lin完成签到 ,获得积分10
19秒前
19秒前
正己烷完成签到 ,获得积分10
20秒前
冬日空虚完成签到,获得积分20
20秒前
蛋堡完成签到 ,获得积分10
21秒前
可爱邓邓完成签到 ,获得积分10
23秒前
23秒前
三千完成签到,获得积分10
24秒前
qaxt完成签到,获得积分10
24秒前
菠萝发布了新的文献求助10
27秒前
春鸮鸟完成签到 ,获得积分10
28秒前
AixLeft完成签到 ,获得积分10
28秒前
Zaf完成签到,获得积分20
29秒前
29秒前
30秒前
鞑靼完成签到 ,获得积分10
31秒前
33秒前
chenchen发布了新的文献求助10
34秒前
34秒前
大缓缓发布了新的文献求助20
35秒前
35秒前
墨痕发布了新的文献求助10
36秒前
36秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584496
求助须知:如何正确求助?哪些是违规求助? 4668199
关于积分的说明 14770858
捐赠科研通 4610653
什么是DOI,文献DOI怎么找? 2529911
邀请新用户注册赠送积分活动 1498856
关于科研通互助平台的介绍 1467394