A Re-evaluation of Deep Learning Methods for Attributed Graph Clustering

计算机科学 聚类分析 图形 聚类系数 数据挖掘 图划分 水准点(测量) 人工智能 机器学习 理论计算机科学 大地测量学 地理
作者
Xinying Lai,Dingming Wu,Christian S. Jensen,Kezhong Lu
标识
DOI:10.1145/3583780.3614768
摘要

Attributed graph clustering aims to partition the nodes in a graph into groups such that the nodes in the same group are close in terms of graph proximity and also have similar attribute values. Recently, deep learning methods have achieved state-of-the-art clustering performance. However, the effectiveness of existing methods remains unclear due to two reasons. First, the datasets used for evaluation do not support fully the goal of attributed graph clustering. The category labels of nodes are only relevant to node attributes, and nodes with the same category label are often distant in the graph. Second, existing methods for the attributed graph clustering are complex and consist of several components. There is lack of comparisons of methods composed of different components from existing methods. This study proposes six benchmark datasets that support better the goal of attributed graph clustering and reports the performance of existing representative methods. Given that existing methods leave room for improvement on the proposed benchmark datasets, we systematically analyze five aspects of existing methods: encoded information, training networks, fusion mechanisms, loss functions, and clustering result generation. Based on these aspects, we decompose existing methods into modules and evaluate the performance of reconfigured methods based on these modules. According to the experimental results on the proposed benchmark datasets, we identify two promising configurations: (i) taking the attribute matrix as input to a graph convolutional network and (ii) layer-wise linear fusing deep neural network and graph attention network. And we also find that complex loss function fails to improve the clustering performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
111完成签到,获得积分20
刚刚
Ava应助WB采纳,获得10
2秒前
3秒前
3秒前
魔幻诗兰完成签到,获得积分10
3秒前
4秒前
4秒前
4秒前
stellc完成签到,获得积分10
4秒前
4秒前
祝你开心发布了新的文献求助10
5秒前
追寻宛海完成签到,获得积分10
6秒前
KKK发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
迷人静白完成签到,获得积分10
8秒前
8秒前
9秒前
wangye发布了新的文献求助10
9秒前
wanci应助zyyyyyyyy采纳,获得10
9秒前
9秒前
追寻宛海发布了新的文献求助15
10秒前
10秒前
复杂惜霜发布了新的文献求助10
10秒前
Jasper应助激昂的逊采纳,获得10
10秒前
黎先生发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
wanci应助务实的西牛采纳,获得10
12秒前
彭于晏应助ww采纳,获得10
12秒前
浮游应助勇yi采纳,获得10
12秒前
12秒前
怀玉发布了新的文献求助10
14秒前
科研通AI6应助SONG采纳,获得10
14秒前
科研通AI6应助是why耶采纳,获得10
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5642076
求助须知:如何正确求助?哪些是违规求助? 4758001
关于积分的说明 15016141
捐赠科研通 4800531
什么是DOI,文献DOI怎么找? 2566119
邀请新用户注册赠送积分活动 1524226
关于科研通互助平台的介绍 1483901