已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Re-evaluation of Deep Learning Methods for Attributed Graph Clustering

计算机科学 聚类分析 图形 聚类系数 数据挖掘 图划分 水准点(测量) 人工智能 机器学习 理论计算机科学 大地测量学 地理
作者
Xinying Lai,Dingming Wu,Christian S. Jensen,Kezhong Lu
标识
DOI:10.1145/3583780.3614768
摘要

Attributed graph clustering aims to partition the nodes in a graph into groups such that the nodes in the same group are close in terms of graph proximity and also have similar attribute values. Recently, deep learning methods have achieved state-of-the-art clustering performance. However, the effectiveness of existing methods remains unclear due to two reasons. First, the datasets used for evaluation do not support fully the goal of attributed graph clustering. The category labels of nodes are only relevant to node attributes, and nodes with the same category label are often distant in the graph. Second, existing methods for the attributed graph clustering are complex and consist of several components. There is lack of comparisons of methods composed of different components from existing methods. This study proposes six benchmark datasets that support better the goal of attributed graph clustering and reports the performance of existing representative methods. Given that existing methods leave room for improvement on the proposed benchmark datasets, we systematically analyze five aspects of existing methods: encoded information, training networks, fusion mechanisms, loss functions, and clustering result generation. Based on these aspects, we decompose existing methods into modules and evaluate the performance of reconfigured methods based on these modules. According to the experimental results on the proposed benchmark datasets, we identify two promising configurations: (i) taking the attribute matrix as input to a graph convolutional network and (ii) layer-wise linear fusing deep neural network and graph attention network. And we also find that complex loss function fails to improve the clustering performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助Wu采纳,获得10
2秒前
wyg1994完成签到,获得积分10
2秒前
2秒前
3秒前
852应助无奈的小虾米采纳,获得10
7秒前
单纯的问安完成签到,获得积分10
7秒前
Hong完成签到,获得积分10
11秒前
沈惠映完成签到 ,获得积分10
12秒前
深情安青应助科研通管家采纳,获得10
13秒前
CodeCraft应助科研通管家采纳,获得10
13秒前
14秒前
Benjamin完成签到 ,获得积分10
16秒前
传统的丹雪完成签到 ,获得积分10
16秒前
科研通AI2S应助一只西瓜茶采纳,获得10
18秒前
peeer完成签到,获得积分10
18秒前
Hong发布了新的文献求助100
20秒前
玛琳卡迪马完成签到,获得积分10
22秒前
酒剑仙完成签到,获得积分10
22秒前
ZTLlele完成签到 ,获得积分10
24秒前
荔枝完成签到 ,获得积分10
24秒前
26秒前
从容的火龙果完成签到 ,获得积分10
27秒前
27秒前
超级灰狼完成签到 ,获得积分10
27秒前
无花果应助叮叮当当当采纳,获得30
29秒前
dongdong完成签到,获得积分20
30秒前
Saadiya发布了新的文献求助10
31秒前
复杂焦发布了新的文献求助20
31秒前
34秒前
西西完成签到 ,获得积分10
34秒前
38秒前
少年游发布了新的文献求助10
39秒前
48秒前
早睡早起完成签到 ,获得积分10
49秒前
小二郎应助少年游采纳,获得10
50秒前
Perry完成签到,获得积分0
50秒前
啦啦啦完成签到 ,获得积分10
50秒前
yangbinsci0827完成签到,获得积分10
50秒前
从容芮完成签到,获得积分0
52秒前
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Terminologia Embryologica 500
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5616958
求助须知:如何正确求助?哪些是违规求助? 4701288
关于积分的说明 14913198
捐赠科研通 4746999
什么是DOI,文献DOI怎么找? 2549134
邀请新用户注册赠送积分活动 1512284
关于科研通互助平台的介绍 1474049