A Re-evaluation of Deep Learning Methods for Attributed Graph Clustering

计算机科学 聚类分析 图形 聚类系数 数据挖掘 图划分 水准点(测量) 人工智能 机器学习 理论计算机科学 大地测量学 地理
作者
Xinying Lai,Dingming Wu,Christian S. Jensen,Kezhong Lu
标识
DOI:10.1145/3583780.3614768
摘要

Attributed graph clustering aims to partition the nodes in a graph into groups such that the nodes in the same group are close in terms of graph proximity and also have similar attribute values. Recently, deep learning methods have achieved state-of-the-art clustering performance. However, the effectiveness of existing methods remains unclear due to two reasons. First, the datasets used for evaluation do not support fully the goal of attributed graph clustering. The category labels of nodes are only relevant to node attributes, and nodes with the same category label are often distant in the graph. Second, existing methods for the attributed graph clustering are complex and consist of several components. There is lack of comparisons of methods composed of different components from existing methods. This study proposes six benchmark datasets that support better the goal of attributed graph clustering and reports the performance of existing representative methods. Given that existing methods leave room for improvement on the proposed benchmark datasets, we systematically analyze five aspects of existing methods: encoded information, training networks, fusion mechanisms, loss functions, and clustering result generation. Based on these aspects, we decompose existing methods into modules and evaluate the performance of reconfigured methods based on these modules. According to the experimental results on the proposed benchmark datasets, we identify two promising configurations: (i) taking the attribute matrix as input to a graph convolutional network and (ii) layer-wise linear fusing deep neural network and graph attention network. And we also find that complex loss function fails to improve the clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张聪明完成签到,获得积分10
刚刚
bkagyin应助小支绝不停笔采纳,获得10
1秒前
长欢发布了新的文献求助10
2秒前
2秒前
自信飞柏完成签到 ,获得积分10
2秒前
4秒前
传奇3应助Alkaid采纳,获得30
5秒前
谢育龙发布了新的文献求助10
7秒前
YJH完成签到,获得积分10
8秒前
长理物电强完成签到,获得积分10
9秒前
朱佳玉完成签到,获得积分10
9秒前
娃娃菜妮发布了新的文献求助10
11秒前
李爱国应助cll采纳,获得10
11秒前
12秒前
MeOH拿桶接完成签到 ,获得积分10
12秒前
俭朴山兰完成签到,获得积分10
13秒前
贼拉瘦的美神完成签到,获得积分10
15秒前
xzn1123完成签到,获得积分0
15秒前
五十完成签到,获得积分10
15秒前
粑粑发布了新的文献求助10
16秒前
17秒前
朴实的绿兰完成签到 ,获得积分10
17秒前
18秒前
21秒前
研友_LpvQlZ完成签到,获得积分10
22秒前
isabellae完成签到,获得积分10
22秒前
雪花完成签到,获得积分10
22秒前
孤独的大灰狼完成签到 ,获得积分10
23秒前
赘婿应助冬虫夏草采纳,获得10
23秒前
MissXia完成签到,获得积分10
23秒前
研友_LX7lK8完成签到 ,获得积分10
24秒前
zz完成签到 ,获得积分10
25秒前
25秒前
烟花应助桔梗采纳,获得10
26秒前
26秒前
苻人英完成签到,获得积分10
26秒前
王王完成签到 ,获得积分10
28秒前
hhhs完成签到,获得积分10
29秒前
月亮之下完成签到 ,获得积分10
29秒前
老八完成签到,获得积分10
30秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137174
求助须知:如何正确求助?哪些是违规求助? 2788239
关于积分的说明 7785062
捐赠科研通 2444183
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625586
版权声明 601011