重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A Re-evaluation of Deep Learning Methods for Attributed Graph Clustering

计算机科学 聚类分析 图形 聚类系数 数据挖掘 图划分 水准点(测量) 人工智能 机器学习 理论计算机科学 大地测量学 地理
作者
Xinying Lai,Dingming Wu,Christian S. Jensen,Kezhong Lu
标识
DOI:10.1145/3583780.3614768
摘要

Attributed graph clustering aims to partition the nodes in a graph into groups such that the nodes in the same group are close in terms of graph proximity and also have similar attribute values. Recently, deep learning methods have achieved state-of-the-art clustering performance. However, the effectiveness of existing methods remains unclear due to two reasons. First, the datasets used for evaluation do not support fully the goal of attributed graph clustering. The category labels of nodes are only relevant to node attributes, and nodes with the same category label are often distant in the graph. Second, existing methods for the attributed graph clustering are complex and consist of several components. There is lack of comparisons of methods composed of different components from existing methods. This study proposes six benchmark datasets that support better the goal of attributed graph clustering and reports the performance of existing representative methods. Given that existing methods leave room for improvement on the proposed benchmark datasets, we systematically analyze five aspects of existing methods: encoded information, training networks, fusion mechanisms, loss functions, and clustering result generation. Based on these aspects, we decompose existing methods into modules and evaluate the performance of reconfigured methods based on these modules. According to the experimental results on the proposed benchmark datasets, we identify two promising configurations: (i) taking the attribute matrix as input to a graph convolutional network and (ii) layer-wise linear fusing deep neural network and graph attention network. And we also find that complex loss function fails to improve the clustering performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
yan1875完成签到,获得积分10
刚刚
浮游应助Dk采纳,获得10
1秒前
kmy发布了新的文献求助10
1秒前
1234发布了新的文献求助10
2秒前
2秒前
潇湘妃子59完成签到,获得积分10
3秒前
发财总完成签到,获得积分20
3秒前
Boy_h发布了新的文献求助10
3秒前
Jebel发布了新的文献求助10
3秒前
kerity完成签到,获得积分10
3秒前
研友_ZlxK6Z发布了新的文献求助10
5秒前
5秒前
英俊的铭应助奋斗向南采纳,获得10
5秒前
llee2005完成签到,获得积分10
5秒前
完美世界应助xxk采纳,获得10
5秒前
5秒前
xinlinwang发布了新的文献求助10
5秒前
avalanche应助ZXD1989采纳,获得50
5秒前
橘子完成签到 ,获得积分20
6秒前
6秒前
6秒前
春水梨发布了新的文献求助10
6秒前
wanci应助王威采纳,获得10
7秒前
7秒前
香蕉觅云应助bojenny采纳,获得10
7秒前
7秒前
7秒前
吴彦祖应助xiaojie采纳,获得10
7秒前
堪稀发布了新的文献求助10
8秒前
式微发布了新的文献求助10
8秒前
chenji给chenji的求助进行了留言
8秒前
111222完成签到,获得积分10
8秒前
Akim应助cccc采纳,获得10
8秒前
8秒前
丘比特应助randomname采纳,获得10
8秒前
同仁来啦完成签到,获得积分10
8秒前
9秒前
9秒前
李健应助马伊采纳,获得10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
Unraveling the Causalities of Genetic Variations - Recent Advances in Cytogenetics 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5466602
求助须知:如何正确求助?哪些是违规求助? 4570422
关于积分的说明 14325272
捐赠科研通 4496951
什么是DOI,文献DOI怎么找? 2463624
邀请新用户注册赠送积分活动 1452586
关于科研通互助平台的介绍 1427567