Clinical Application of Digital and Computational Pathology in Renal Cell Carcinoma: A Systematic Review

数字化病理学 背景(考古学) 医学 系统回顾 医学物理学 梅德林 肾细胞癌 病理 计算机科学 人工智能 数据科学 古生物学 政治学 法学 生物
作者
Z. Khene,Solène‐Florence Kammerer‐Jacquet,P. Bigot,Noémie Rabilloud,Laurence Albigès,Vitaly Margulis,R. de Crevoisier,Oscar Acosta,Nathalie Rioux‐Leclercq,Yair Lotan,Morgan Rouprêt,Karim Bensalah
出处
期刊:European Urology Oncology [Elsevier]
卷期号:7 (3): 401-411 被引量:4
标识
DOI:10.1016/j.euo.2023.10.018
摘要

Context Computational pathology is a new interdisciplinary field that combines traditional pathology with modern technologies such as digital imaging and machine learning to better understand the diagnosis, prognosis, and natural history of many diseases. Objective To provide an overview of digital and computational pathology and its current and potential applications in renal cell carcinoma (RCC). Evidence acquisition A systematic review of the English-language literature was conducted using the PubMed, Web of Science, and Scopus databases in December 2022 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PROSPERO ID: CRD42023389282). Risk of bias was assessed according to the Prediction Model Study Risk of Bias Assessment Tool. Evidence synthesis In total, 20 articles were included in the review. All the studies used a retrospective design, and all digital pathology techniques were implemented retrospectively. The studies were classified according to their primary objective: detection, tumor characterization, and patient outcome. Regarding the transition to clinical practice, several studies showed promising potential. However, none presented a comprehensive assessment of clinical utility and implementation. Notably, there was substantial heterogeneity for both the strategies used for model building and the performance metrics reported. Conclusions This review highlights the vast potential of digital and computational pathology for the detection, classification, and assessment of oncological outcomes in RCC. Preliminary work in this field has yielded promising results. However, these models have not yet reached a stage where they can be integrated into routine clinical practice. Patient summary Computational pathology combines traditional pathology and technologies such as digital imaging and artificial intelligence to improve diagnosis of disease and identify prognostic factors and new biomarkers. The number of studies exploring its potential in kidney cancer is rapidly increasing. However, despite the surge in research activity, computational pathology is not yet ready for widespread routine use.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
田様应助zhangsudi采纳,获得10
2秒前
2秒前
我脸1点都不圆完成签到,获得积分10
2秒前
2秒前
3秒前
烟花应助flyindancewei采纳,获得10
6秒前
9秒前
9秒前
Owen应助liuguohua126采纳,获得10
12秒前
13秒前
时尚的志泽完成签到,获得积分10
14秒前
zhangsudi发布了新的文献求助10
15秒前
16秒前
lili完成签到,获得积分10
17秒前
19秒前
一定行发布了新的文献求助10
21秒前
22秒前
24秒前
Xw完成签到,获得积分10
24秒前
SRsora完成签到,获得积分10
24秒前
25秒前
26秒前
26秒前
27秒前
28秒前
小红星发布了新的文献求助10
29秒前
善良的书本完成签到,获得积分10
30秒前
穆奕发布了新的文献求助10
32秒前
ztt关注了科研通微信公众号
33秒前
33秒前
34秒前
还可以的完成签到,获得积分10
38秒前
38秒前
nk完成签到 ,获得积分10
39秒前
菓小柒发布了新的文献求助10
40秒前
情怀应助多情如容采纳,获得10
41秒前
甜蜜乐松完成签到 ,获得积分10
43秒前
renshiq发布了新的文献求助10
44秒前
东方翰发布了新的文献求助10
47秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
Generative AI in Higher Education 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3356273
求助须知:如何正确求助?哪些是违规求助? 2979823
关于积分的说明 8692252
捐赠科研通 2661384
什么是DOI,文献DOI怎么找? 1457177
科研通“疑难数据库(出版商)”最低求助积分说明 674714
邀请新用户注册赠送积分活动 665533