已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multimodal Lyrics-Rhythm Matching

歌词 节奏 计算机科学 钥匙(锁) 语音识别 音乐信息检索 发音 匹配(统计) 鉴定(生物学) 音色 人工智能 语言学 音乐剧 数学 声学 艺术 植物 视觉艺术 生物 哲学 物理 统计 计算机安全
作者
Callie C. Liao,Duoduo Liao,Jesse Guessford
标识
DOI:10.1109/bigdata55660.2022.10021009
摘要

Despite the recent increase in research on artificial intelligence for music, prominent correlations between key components of lyrics and rhythm such as keywords, stressed syllables, and strong beats are not frequently studied. This is likely due to challenges such as audio misalignment, inaccuracies in syllabic identification, and most importantly, the need for cross-disciplinary knowledge. To address this lack of research, we propose a novel multimodal lyrics-rhythm matching approach in this paper that specifically matches key components of lyrics and music with each other without any language limitations. We use audio instead of sheet music with readily available metadata, which creates more challenges yet increases the application flexibility of our method. Furthermore, our approach creatively generates several patterns involving various multimodalities, including music strong beats, lyrical syllables, auditory changes in a singer’s pronunciation, and especially lyrical keywords, which are utilized for matching key lyrical elements with key rhythmic elements. This advantageous approach not only provides a unique way to study auditory lyrics-rhythm correlations including efficient rhythm-based audio alignment algorithms, but also bridges computational linguistics with music as well as music cognition. Our experimental results reveal an 0.81 probability of matching on average, and around 30% of the songs have a probability of 0.9 or higher of keywords landing on strong beats, including 12% of the songs with a perfect landing. Also, the similarity metrics are used to evaluate the correlation between lyrics and rhythm. It shows that nearly 50% of the songs have 0.70 similarity or higher. In conclusion, our approach contributes significantly to the lyrics-rhythm relationship by computationally unveiling insightful correlations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
Himejima完成签到,获得积分0
3秒前
啊啊啊啊宇呀完成签到 ,获得积分10
3秒前
一个有点长的序完成签到 ,获得积分10
4秒前
传奇3应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
ding应助科研通管家采纳,获得10
6秒前
6秒前
6秒前
8秒前
9秒前
王子发布了新的文献求助10
9秒前
11秒前
炙热孤容完成签到 ,获得积分10
12秒前
12秒前
任元元完成签到 ,获得积分10
16秒前
XL神放完成签到 ,获得积分10
18秒前
han完成签到 ,获得积分10
21秒前
22秒前
小乖完成签到 ,获得积分10
22秒前
CipherSage应助TK采纳,获得10
23秒前
23秒前
23秒前
七慕凉发布了新的文献求助10
27秒前
李健的小迷弟应助Olivia采纳,获得10
28秒前
28秒前
勤恳的心情完成签到,获得积分10
29秒前
拔萝卜鸭发布了新的文献求助10
29秒前
29秒前
孤独的无血完成签到,获得积分10
32秒前
32秒前
wjwqz发布了新的文献求助10
33秒前
雨洋完成签到,获得积分10
34秒前
神勇麦片完成签到,获得积分10
35秒前
大胆惊蛰完成签到,获得积分10
35秒前
tizi发布了新的文献求助10
36秒前
神勇麦片发布了新的文献求助10
38秒前
38秒前
kang完成签到 ,获得积分10
38秒前
古德豹发布了新的文献求助10
39秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146637
求助须知:如何正确求助?哪些是违规求助? 2797945
关于积分的说明 7826268
捐赠科研通 2454478
什么是DOI,文献DOI怎么找? 1306280
科研通“疑难数据库(出版商)”最低求助积分说明 627692
版权声明 601522