A machine learning method to predict rate constants for various reactions in combustion kinetic models

燃烧 动能 反应速率常数 热力学 化学 动力学 物理化学 物理 经典力学
作者
Ning Li,Sanket Girhe,Mingzhi Zhang,Bingjie Chen,Yingjia Zhang,Shenghua Liu,Heinz Pitsch
出处
期刊:Combustion and Flame [Elsevier BV]
卷期号:263: 113375-113375 被引量:12
标识
DOI:10.1016/j.combustflame.2024.113375
摘要

Accurate prediction of temperature-dependent reaction rate constants is essential for the development of combustion kinetic models. However, the computational expense associated with calculating rate constants using high-level quantum chemistry methods becomes infeasible as the complexity of the kinetic models grows, and alternative approaches relying on analogies can exhibit significant inaccuracies. In recent times, as the field of combustion has generated a vast volume of kinetic data, the utilization of data-driven approaches, specifically machine learning, holds great promise in facilitating the development of kinetic models. In particular, natural language processing (NLP) models, such as ChatGPT, have become very useful. Here, we propose a deep neural network-based model to predict rate constants, and to explore the potential of machine learning methods to facilitate combustion kinetic model development. A diverse and high-quality dataset has been compiled concerning high-pressure limit reaction rate constants from nine important reaction classes. As the common representation of chemical reactions forms a language, we use the BERT transformer from that is part of common NLP techniques to generate reaction fingerprints from reaction SMILES. The model employs these reaction fingerprints as input to predict the three modified-Arrhenius parameters, i.e. the log of the frequency parameter (ln A), temperature exponent (n), and activation energy (Ea). A joint loss function is introduced to ensure that the rate constants calculated from the predicted Arrhenius parameters jointly provide good accuracy and to avoid overfitting. The final model achieves coefficients of determination (R2) of 0.74, 0.71, and 0.96 for the predictions of ln A, n, and Ea, respectively. The calculated rate constants, based on the predicted Arrhenius parameters, exhibit an R2 value of 0.95 across the temperature range of 500–2000 K. Additionally, the model's ability to predict rate constants in reaction mechanisms for different fuels is evaluated through species-based cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
2秒前
稳重盼夏完成签到,获得积分10
3秒前
活ni的pig完成签到 ,获得积分10
4秒前
Akim应助snjzsj采纳,获得10
6秒前
7秒前
含糊的泥猴桃完成签到 ,获得积分10
8秒前
爆米花应助周围采纳,获得30
10秒前
Thea完成签到,获得积分10
11秒前
吴倩发布了新的文献求助10
12秒前
15秒前
核桃发布了新的文献求助30
18秒前
19秒前
Yangpc发布了新的文献求助10
19秒前
鲜艳的访风完成签到,获得积分10
20秒前
22秒前
22秒前
熊猫发布了新的文献求助10
24秒前
爆米花应助off采纳,获得10
24秒前
常乐长安发布了新的文献求助10
25秒前
hy完成签到 ,获得积分10
26秒前
玉yu完成签到 ,获得积分10
26秒前
shusen完成签到,获得积分10
27秒前
27秒前
29秒前
仁爱山彤完成签到 ,获得积分10
31秒前
杨诗婕完成签到 ,获得积分10
31秒前
32秒前
stanley发布了新的文献求助10
33秒前
科研通AI5应助hhh采纳,获得10
34秒前
Memory发布了新的文献求助30
34秒前
量子星尘发布了新的文献求助10
34秒前
34秒前
35秒前
GHOMON完成签到,获得积分10
36秒前
36秒前
37秒前
38秒前
安详的白云完成签到 ,获得积分10
40秒前
40秒前
40秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Manipulating the Mouse Embryo: A Laboratory Manual, Fourth Edition 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4586386
求助须知:如何正确求助?哪些是违规求助? 4002819
关于积分的说明 12391220
捐赠科研通 3678978
什么是DOI,文献DOI怎么找? 2027763
邀请新用户注册赠送积分活动 1061227
科研通“疑难数据库(出版商)”最低求助积分说明 947598