A machine learning method to predict rate constants for various reactions in combustion kinetic models

燃烧 动能 反应速率常数 热力学 化学 动力学 物理化学 物理 经典力学
作者
Ning Li,Sanket Girhe,Mingzhi Zhang,Bingjie Chen,Yingjia Zhang,Shenghua Liu,Heinz Pitsch
出处
期刊:Combustion and Flame [Elsevier]
卷期号:263: 113375-113375 被引量:15
标识
DOI:10.1016/j.combustflame.2024.113375
摘要

Accurate prediction of temperature-dependent reaction rate constants is essential for the development of combustion kinetic models. However, the computational expense associated with calculating rate constants using high-level quantum chemistry methods becomes infeasible as the complexity of the kinetic models grows, and alternative approaches relying on analogies can exhibit significant inaccuracies. In recent times, as the field of combustion has generated a vast volume of kinetic data, the utilization of data-driven approaches, specifically machine learning, holds great promise in facilitating the development of kinetic models. In particular, natural language processing (NLP) models, such as ChatGPT, have become very useful. Here, we propose a deep neural network-based model to predict rate constants, and to explore the potential of machine learning methods to facilitate combustion kinetic model development. A diverse and high-quality dataset has been compiled concerning high-pressure limit reaction rate constants from nine important reaction classes. As the common representation of chemical reactions forms a language, we use the BERT transformer from that is part of common NLP techniques to generate reaction fingerprints from reaction SMILES. The model employs these reaction fingerprints as input to predict the three modified-Arrhenius parameters, i.e. the log of the frequency parameter (ln A), temperature exponent (n), and activation energy (Ea). A joint loss function is introduced to ensure that the rate constants calculated from the predicted Arrhenius parameters jointly provide good accuracy and to avoid overfitting. The final model achieves coefficients of determination (R2) of 0.74, 0.71, and 0.96 for the predictions of ln A, n, and Ea, respectively. The calculated rate constants, based on the predicted Arrhenius parameters, exhibit an R2 value of 0.95 across the temperature range of 500–2000 K. Additionally, the model's ability to predict rate constants in reaction mechanisms for different fuels is evaluated through species-based cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1250241652发布了新的文献求助30
1秒前
bgerivers发布了新的文献求助10
1秒前
nianshu完成签到 ,获得积分0
2秒前
Red完成签到,获得积分10
2秒前
椎名真白发布了新的文献求助200
4秒前
ZZZ发布了新的文献求助10
5秒前
冲冲完成签到,获得积分10
5秒前
jc_HSC完成签到,获得积分10
6秒前
6秒前
QIQI发布了新的文献求助10
7秒前
后会无期完成签到,获得积分10
7秒前
邸增楼发布了新的文献求助10
11秒前
英姑应助凯旋采纳,获得10
11秒前
ergatoid完成签到,获得积分10
12秒前
栢君苏mini完成签到,获得积分10
14秒前
16秒前
17秒前
17秒前
单薄乐珍完成签到 ,获得积分0
18秒前
ATREE发布了新的文献求助10
21秒前
21秒前
21秒前
Possession发布了新的文献求助10
22秒前
倒霉兔子完成签到,获得积分0
22秒前
凯旋完成签到,获得积分20
22秒前
H哈完成签到,获得积分10
22秒前
DoctorTa发布了新的文献求助10
23秒前
你嵙这个期刊没买应助QIQI采纳,获得10
25秒前
jason驳回了唯天应助
26秒前
26秒前
四斤瓜完成签到 ,获得积分10
27秒前
凯旋发布了新的文献求助10
28秒前
28秒前
小苏打完成签到,获得积分10
28秒前
31秒前
Zoe完成签到,获得积分10
31秒前
32秒前
共享精神应助Possession采纳,获得10
33秒前
hkunyu完成签到 ,获得积分10
33秒前
阔达的海完成签到,获得积分10
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565478
求助须知:如何正确求助?哪些是违规求助? 4650535
关于积分的说明 14691776
捐赠科研通 4592467
什么是DOI,文献DOI怎么找? 2519635
邀请新用户注册赠送积分活动 1492028
关于科研通互助平台的介绍 1463244