A machine learning method to predict rate constants for various reactions in combustion kinetic models

燃烧 动能 反应速率常数 热力学 化学 动力学 物理化学 物理 经典力学
作者
Ning Li,Sanket Girhe,Mingzhi Zhang,Bingjie Chen,Yingjia Zhang,Shenghua Liu,Heinz Pitsch
出处
期刊:Combustion and Flame [Elsevier BV]
卷期号:263: 113375-113375 被引量:4
标识
DOI:10.1016/j.combustflame.2024.113375
摘要

Accurate prediction of temperature-dependent reaction rate constants is essential for the development of combustion kinetic models. However, the computational expense associated with calculating rate constants using high-level quantum chemistry methods becomes infeasible as the complexity of the kinetic models grows, and alternative approaches relying on analogies can exhibit significant inaccuracies. In recent times, as the field of combustion has generated a vast volume of kinetic data, the utilization of data-driven approaches, specifically machine learning, holds great promise in facilitating the development of kinetic models. In particular, natural language processing (NLP) models, such as ChatGPT, have become very useful. Here, we propose a deep neural network-based model to predict rate constants, and to explore the potential of machine learning methods to facilitate combustion kinetic model development. A diverse and high-quality dataset has been compiled concerning high-pressure limit reaction rate constants from nine important reaction classes. As the common representation of chemical reactions forms a language, we use the BERT transformer from that is part of common NLP techniques to generate reaction fingerprints from reaction SMILES. The model employs these reaction fingerprints as input to predict the three modified-Arrhenius parameters, i.e. the log of the frequency parameter (ln A), temperature exponent (n), and activation energy (Ea). A joint loss function is introduced to ensure that the rate constants calculated from the predicted Arrhenius parameters jointly provide good accuracy and to avoid overfitting. The final model achieves coefficients of determination (R2) of 0.74, 0.71, and 0.96 for the predictions of ln A, n, and Ea, respectively. The calculated rate constants, based on the predicted Arrhenius parameters, exhibit an R2 value of 0.95 across the temperature range of 500–2000 K. Additionally, the model's ability to predict rate constants in reaction mechanisms for different fuels is evaluated through species-based cross-validation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
执意完成签到 ,获得积分10
1秒前
123完成签到,获得积分20
1秒前
1秒前
牛黄完成签到 ,获得积分10
1秒前
1秒前
dyy完成签到,获得积分20
3秒前
fusheng完成签到 ,获得积分10
4秒前
Kenny完成签到,获得积分10
4秒前
孤独雨梅完成签到,获得积分10
5秒前
123发布了新的文献求助10
5秒前
Ya完成签到 ,获得积分10
6秒前
王文杰完成签到 ,获得积分10
7秒前
clivia完成签到,获得积分10
7秒前
dyy发布了新的文献求助10
8秒前
chai完成签到,获得积分10
8秒前
一颗西柚完成签到 ,获得积分10
8秒前
传统的凌珍完成签到,获得积分10
8秒前
浮生完成签到 ,获得积分10
9秒前
tree完成签到,获得积分10
9秒前
巴巴拉拉巴拉完成签到 ,获得积分10
11秒前
甜甜的tiantian完成签到,获得积分10
13秒前
李健应助kingsley05采纳,获得10
13秒前
糖糖糖唐完成签到,获得积分10
13秒前
清颜完成签到 ,获得积分10
15秒前
柚子完成签到,获得积分10
16秒前
Reef完成签到,获得积分10
18秒前
zxzb完成签到,获得积分10
19秒前
qqdm完成签到 ,获得积分10
19秒前
随风完成签到,获得积分0
19秒前
慕青应助dyy采纳,获得10
19秒前
iPhone7跑GWAS完成签到,获得积分10
19秒前
量子星尘发布了新的文献求助10
20秒前
Depeng完成签到,获得积分10
20秒前
兔子不吃胡萝卜完成签到 ,获得积分10
21秒前
尊敬飞丹完成签到,获得积分10
21秒前
Orange应助甜甜的tiantian采纳,获得10
22秒前
23秒前
25秒前
活力的小猫咪完成签到 ,获得积分10
25秒前
Lee完成签到,获得积分10
25秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008892
求助须知:如何正确求助?哪些是违规求助? 3548554
关于积分的说明 11299093
捐赠科研通 3283171
什么是DOI,文献DOI怎么找? 1810293
邀请新用户注册赠送积分活动 886000
科研通“疑难数据库(出版商)”最低求助积分说明 811245