催化作用
钴
碳纳米管
酞菁
一氧化碳
二氧化碳电化学还原
选择性
化学
碳纤维
纳米技术
材料科学
无机化学
化学工程
有机化学
复合材料
工程类
复合数
作者
Hongdong Li,Yue Pan,Zuochao Wang,Yaodong Yu,Juan Xiong,Haoyang Du,Jianping Lai,Lei Wang,Shouhua Feng
出处
期刊:Nano Research
[Springer Nature]
日期:2021-11-18
卷期号:15 (4): 3056-3064
被引量:58
标识
DOI:10.1007/s12274-021-3962-2
摘要
Coordination engineering can enhance the activity and stability of the catalyst in heterogeneous catalysis. However, the axial coordination engineering between different groups on the carbon carrier and molecular catalysts in the electrocatalytic carbon dioxide reduction reaction (CO2RR) has been studied rarely. Through coordination engineering strategy, a series of amino (NH2), hydroxyl (OH), and carboxyl (COOH) groups functionalized carbon nanotubes (CNT) immobilized cobalt phthalocyanine (CoPc) catalysts are designed. Compared with no groups, OH groups and COOH groups, NH2 groups can effectively change the coordination environment of the central metal Co, thereby significantly increasing the turnover frequency (TOF) (31.4 s−1 at −0.6 V vs. RHE, CoPc/NH2-CNT > CoPc/OH-CNT > CoPc/COOH-CN > CoPc/CNT). In the flow cell, the CoPc/NH2-CNT catalyst has high carbon monoxide (CO) selectivity at high current density (∼ 100% at −225 mA·cm−2, ∼ 96% at −351 mA·cm−2). Importantly, the CoPc/NH2-CNT catalyst can operate stably for 100 h at 225 mA·cm−2. Theoretical calculations reveal that CoPc/NH2-CNT catalyst is beneficial to the formation of *COOH and desorption of *CO, thus promoting CO2RR. This work provides an excellent platform for understanding the effect of coordination engineering on electrocatalytic performance and promotes a way to explore efficient and stable catalysts in other applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI