Coordination engineering of cobalt phthalocyanine by functionalized carbon nanotube for efficient and highly stable carbon dioxide reduction at high current density

催化作用 碳纳米管 酞菁 一氧化碳 二氧化碳电化学还原 选择性 化学 碳纤维 纳米技术 材料科学 无机化学 化学工程 有机化学 复合材料 工程类 复合数
作者
Hongdong Li,Yue Pan,Zuochao Wang,Yaodong Yu,Juan Xiong,Haoyang Du,Jianping Lai,Lei Wang,Shouhua Feng
出处
期刊:Nano Research [Springer Nature]
卷期号:15 (4): 3056-3064 被引量:62
标识
DOI:10.1007/s12274-021-3962-2
摘要

Coordination engineering can enhance the activity and stability of the catalyst in heterogeneous catalysis. However, the axial coordination engineering between different groups on the carbon carrier and molecular catalysts in the electrocatalytic carbon dioxide reduction reaction (CO2RR) has been studied rarely. Through coordination engineering strategy, a series of amino (NH2), hydroxyl (OH), and carboxyl (COOH) groups functionalized carbon nanotubes (CNT) immobilized cobalt phthalocyanine (CoPc) catalysts are designed. Compared with no groups, OH groups and COOH groups, NH2 groups can effectively change the coordination environment of the central metal Co, thereby significantly increasing the turnover frequency (TOF) (31.4 s−1 at −0.6 V vs. RHE, CoPc/NH2-CNT > CoPc/OH-CNT > CoPc/COOH-CN > CoPc/CNT). In the flow cell, the CoPc/NH2-CNT catalyst has high carbon monoxide (CO) selectivity at high current density (∼ 100% at −225 mA·cm−2, ∼ 96% at −351 mA·cm−2). Importantly, the CoPc/NH2-CNT catalyst can operate stably for 100 h at 225 mA·cm−2. Theoretical calculations reveal that CoPc/NH2-CNT catalyst is beneficial to the formation of *COOH and desorption of *CO, thus promoting CO2RR. This work provides an excellent platform for understanding the effect of coordination engineering on electrocatalytic performance and promotes a way to explore efficient and stable catalysts in other applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
415484112完成签到,获得积分10
1秒前
yinyi发布了新的文献求助10
1秒前
1秒前
赵一丁完成签到,获得积分10
2秒前
成就绮琴完成签到 ,获得积分10
2秒前
Chen完成签到,获得积分10
2秒前
huanfid完成签到 ,获得积分10
2秒前
2秒前
2秒前
3秒前
Stitch完成签到 ,获得积分10
3秒前
3秒前
眯眯眼的冷珍完成签到,获得积分10
3秒前
bjyx完成签到,获得积分10
3秒前
reck完成签到,获得积分10
4秒前
pharmstudent发布了新的文献求助30
4秒前
小田完成签到,获得积分10
4秒前
小喵发布了新的文献求助10
5秒前
FashionBoy应助毛毛哦啊采纳,获得10
5秒前
Lucas应助Chen采纳,获得10
6秒前
强健的蚂蚁完成签到,获得积分20
6秒前
小宇发布了新的文献求助10
6秒前
斜杠武完成签到,获得积分20
6秒前
7秒前
伞兵龙发布了新的文献求助10
7秒前
RC_Wang应助科研小民工采纳,获得10
7秒前
sanben完成签到,获得积分10
7秒前
7秒前
_蝴蝶小姐完成签到,获得积分10
8秒前
诗轩发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
迟大猫应助乐乱采纳,获得10
10秒前
万能图书馆应助派大星采纳,获得10
11秒前
FashionBoy应助娜行采纳,获得10
12秒前
12秒前
传奇3应助后知后觉采纳,获得10
13秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672