癌症治疗
化学
对偶(语法数字)
癌症
酶
生物化学
癌症研究
医学
内科学
文学类
艺术
作者
Ming Zhao,Anni Zhu,Xueyun Zheng,Qian Xiao-min,Shujun Zhang,Chenyu Wu,Congwei Yu,Jiaheng Zhang,Jingchao Li
标识
DOI:10.1002/adhm.202300118
摘要
Radiotherapy is a common cancer treatment approach in clinical practice, yet its efficacy has been restricted by tumor hypoxia. Nanomaterials-mediated systemic delivery of glucose oxidase (GOx) and catalase (CAT) or CAT-like nanoenzymes holds the potential to enhance tumor oxygenation. However, they face the challenge of intermediate (hydrogen peroxide [H2 O2 ]) escape during systemic circulation if the enzyme pair is not closely placed to largely decompose H2 O2 , leading to oxidative stress on normal tissues. In the present study, a oxygen-generating nanocascade, n(GOx-CAT)C7A , constructed by strategically placing an enzymatic cascade (GOx and CAT) within a polymeric coating rich in hexamethyleneimine (C7A) moieties, is reported. During blood circulation, C7A remains predominantly non-protonated , achieving prolonged blood circulation due to its low-fouling surface. Once n(GOx-CAT)C7A reaches the tumor site, the acidic tumor microenvironment (TME) induces protonation of C7A moieties, resulting in a positively charged surface for enhanced tumor transcytosis. Moreover, GOx and CAT are covalently conjugated into close spatial proximity (<10 nm) for effective H2 O2 elimination. As demonstrated by the in vivo results, n(GOx-CAT)C7A achieves effective tumor retention and oxygenation, potent radiosensitization and antitumor effects. Such a dual-enzyme nanocascade for smart O2 delivery holds great potential for enhancing the hypoxia-compromised cancer therapies.
科研通智能强力驱动
Strongly Powered by AbleSci AI