芦苇
水生植物
香蒲
湿地
植物修复
环境科学
水生植物
人工湿地
中观
环境化学
农学
土壤水分
营养物
化学
生态学
生物
土壤科学
作者
Sheetal Rimal,Antoine Karam,Jie Chen,Achut Parajuli,Damase Khasa
标识
DOI:10.1080/15226514.2022.2105809
摘要
High levels of trace metals such as copper (Cu) can affect water quality and induce toxic effects on living organisms in aquatic ecosystems. This research assesses the potential capacity for Cu phytofiltration by three emergent macrophytes from Cu-contaminated sediments and water containing five concentrations of Cu (0, 50, 100, 150, and 200 µM). We conducted a greenhouse study using semi-hydroponic and hydroponic experimental conditions to simulate a natural wetland system. We selected three plant types that were collected in Quebec (Canada): native Typha latifolia, and native and, exotic Phragmites australis. Under semi-hydroponic, the responses indicated an almost 3-fold higher mean root Cu-accumulation from Cu-0 to Cu-Sediment (80.3-226.1 mg kg-1) and an 8.6-fold increase (122.2-1045.5 mg kg-1) for Cu-0 to Cu-200 µM under hydroponic conditions, resulting in Cu translocation < 1 and BCF >1 under both conditions. We found an inverse correlation between increasing doses of Cu with mean aboveground and belowground biomass together with height, and root length of selected plants under hydroponic conditions. Our results indicate that these wetland macrophytes could be useful in heavy-metal removal from Cu-contaminated sediments and Cu-enriched water.Studies in wetland phytoremediation have focus on either contaminated soil or water. This research highlights the comparison of three emergent macrophytes in removing copper from both soil (a simulated riparian wetland) and water (floating treatment wetland). This study compares the phytoextraction and rhizofiltration capacity of Typha latifolia, with native versus exotic Phragmites australis with a translocation factor for Cu < 1 and bioconcentration factor > 1 in the Cu-Sediment and Cu-enriched water.
科研通智能强力驱动
Strongly Powered by AbleSci AI