糖基转移酶
串联重复
耐旱性
生物
计算生物学
化学
植物
遗传学
基因
基因组
作者
Yuanfen Gao,Yaliang Shi,Tanzim Jahan,Md. Nurul Huda,Lin Hao,Yuqi He,Muriel Quinet,Hui Chen,Kaixuan Zhang,Meiliang Zhou
摘要
Glycosyltransferase genes are organised as tandem repeats in the buckwheat genome, yet the functional implications and evolutionary significance of duplicated genes remain largely unexplored. In this study, gene family analysis revealed that FtUGT71K6 and FtUGT71K7 are tandem repeats in the buckwheat genome. Moreover, GWAS results for epicatechin suggested that this tandem repeat function was associated with epicatechin content of Tartary buckwheat germplasm, highlighting variations in the promoter haplotypes of FtUGT71K7 influenced epicatechin levels. FtUGT71K6 and FtUGT71K7 were shown to catalyse UDP-glucose conjugation to cyanidin and epicatechin. Furthermore, overexpression of FtUGT71K6 and FtUGT71K7 increased total antioxidant capacity and altered metabolite content of the epicatechin biosynthesis pathway, contributing to improved drought tolerance, while overexpression of FtUGT71K6 significantly improved salt stress tolerance. However, overexpression of these two genes did not contribute to resistance against Rhizoctonia solani. Evolutionary selection pressure analysis suggested positive selection of a critical amino acid ASP-53 in FtUGT71K6 and FtUGT71K7 during the duplication event. Overall, our study indicated that FtUGT71K6 and FtUGT71K7 play crucial roles in drought stress tolerance via modulating epicatechin synthesis in buckwheat.
科研通智能强力驱动
Strongly Powered by AbleSci AI