Causal Disentanglement-Based Hidden Markov Model for Cross-Domain Bearing Fault Diagnosis

方位(导航) 隐马尔可夫模型 断层(地质) 计算机科学 领域(数学分析) 马尔可夫模型 马尔可夫链 人工智能 数据挖掘 机器学习 数学 地质学 地震学 数学分析
作者
Rihao Chang,Yongtao Ma,Weizhi Nie,Jie Nie,Yiqun Zhu,An-An Liu
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-15
标识
DOI:10.1109/tnnls.2024.3513329
摘要

In the predictive maintenance of modern industries, accurate fault diagnosis under complex conditions is now a major research focus. Recent research has demonstrated the effectiveness of deep learning in advancing bearing fault diagnosis. However, due to the scarcity of industrial failure data, achieving robust generalization in complex working conditions remains a challenge. To address this, we propose the causal disentanglement-based hidden Markov model (CDHM), which is designed to recognize the underlying causality in bearing vibration signals, capturing essential fault patterns for a more accurate and generalizable fault representation. Compared to signal-processing methods, deep learning approaches bypass the complex signal analysis, yet overlook the significance of signal theories in precise fault diagnosis. Nevertheless, the bearing vibration mechanism sheds light on the fact that the vibration induced by a certain type of fault has a consistent pattern across different system conditions, while the fault-irrelevant vibration such as noise and interference varies. Therefore, the CDHM constructs a time-series structural causal model (SCM), offering a new perspective on the interconnections of bearing vibration signals. Based on the SCM, a hidden Markovian variational autoencoder (VAE) is designed to progressively disentangle the vibration signal into two parts: a fault-relevant representation capturing essential bearing fault characteristics, and a fault-irrelevant representation capturing system and environmental interference. While unsupervised causal disentanglement typically presents optimization challenges, the CDHM benefits from cross-domain fault diagnosis tasks by leveraging the cross-domain consistency of the fault-relevant representation and the domain sensitivity of the fault-irrelevant representation. This design aligns the optimization objectives of causal disentanglement learning and cross-domain transfer learning, enabling mutually reinforcing optimization and ensuring robust generalization across diverse operating conditions. We validate the CDHM through experiments on the Case Western Reserve University (CWRU), Intelligent Maintenance System (IMS), and Paderborn University (PU) datasets, demonstrating its strong potential for industrial applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马发布了新的文献求助10
刚刚
刚刚
天天快乐应助ZW采纳,获得10
刚刚
jue123完成签到,获得积分10
刚刚
1秒前
Eve发布了新的文献求助10
1秒前
深情安青应助woshiwuziq采纳,获得10
1秒前
在水一方应助kay采纳,获得10
2秒前
3秒前
3秒前
Jasper应助香菜采纳,获得10
3秒前
海的呼唤完成签到,获得积分10
4秒前
5秒前
何小明完成签到,获得积分20
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
7秒前
纯真的幼丝完成签到,获得积分10
8秒前
zl完成签到,获得积分10
8秒前
加油发布了新的文献求助10
8秒前
月亮完成签到,获得积分10
8秒前
微兔小妹完成签到 ,获得积分10
8秒前
ZJT完成签到,获得积分10
8秒前
9秒前
9秒前
科研通AI5应助lmc采纳,获得10
10秒前
lily发布了新的文献求助10
10秒前
听闻发布了新的文献求助10
10秒前
策略发布了新的文献求助10
11秒前
11秒前
Orange应助意而往南飞采纳,获得10
11秒前
亮仔发布了新的文献求助10
12秒前
小蘑菇应助ZJT采纳,获得10
12秒前
12秒前
汉堡包应助小马采纳,获得10
13秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
CRC Handbook of Chemistry and Physics 104th edition 1000
Density Functional Theory: A Practical Introduction, 2nd Edition 840
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Gay and Lesbian Asia 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3755902
求助须知:如何正确求助?哪些是违规求助? 3299200
关于积分的说明 10109040
捐赠科研通 3013805
什么是DOI,文献DOI怎么找? 1655255
邀请新用户注册赠送积分活动 789678
科研通“疑难数据库(出版商)”最低求助积分说明 753361