层状双氢氧化物
水滑石
吸附
解吸
化学
磷酸盐
核化学
肥料
无机化学
催化作用
有机化学
作者
Xiangyang Wang,Chen Shi,Xiaodi Hao,Yuanyuan Wu
标识
DOI:10.1016/j.scitotenv.2023.167263
摘要
Selective adsorption of phosphorus (P) from the acidic leachate of sludge-incinerated ash (SIA) becomes more attractive due to avoiding removing heavy metals. Especially, layered double hydroxides (LDHs) as an anion adsorbent could be applied into this area owing to their good capacity on P-adsorption and low cost on preparation. Interestingly, SIA contains more aluminum (Al) and iron (Fe) needed to be removed prior to P-recovery, and removed Al and Fe could be utilized to synthesize LDHs, like Mg/Al-LDH and Mg/Fe-LDH. With this study, Mg/Al-LDH-r and Mg/Fe-LDH-r were economically synthesized with Al and Fe removed from SIA, which were similar in their chemical structures to commercial LDHs. The synthesized LDHs had a high P-adsorption capacity, up to 95.0%. The maximal phosphate capacity of the recovered LDHs (Mg/Al-LDH-r and Mg/Fe-LDH-r) was 239.0 and 199.8 mg P/g LDHs, respectively. "NaOH + desalinated brine" as a new desorption solution could achieve a desorption ratio at about 80%, which could reduce the liquid-solid ratio by at least 60%, greatly decreasing the desorption cost. Pot trials demonstrated that the desorbed and precipitated CaP could promote the growth of maize as well as a commercial P-fertilizer. Furthermore, the adsorbed phosphate by LDHs could be directly used as a slow-released P-fertilizer and also improve the pH value of acidic soil, completely deleting the desorption process.
科研通智能强力驱动
Strongly Powered by AbleSci AI