Hybrid Assimilation of Snow Cover Improves Land Surface Simulations over Northern China

数据同化 环境科学 积雪 均方误差 气候学 气象学 土地覆盖 积雪 大气科学 地质学 土地利用 数学 地理 统计 工程类 土木工程
作者
Enda Zhu,Chunxiang Shi,Shuai Sun,Binghao Jia,Yaqiang Wang,Xing Yuan
出处
期刊:Journal of Hydrometeorology [American Meteorological Society]
卷期号:24 (10): 1725-1738
标识
DOI:10.1175/jhm-d-23-0014.1
摘要

Abstract Ensemble data assimilation (DA) is an efficient approach to reduce snow simulation errors by combining observation and land surface modeling. However, there is a small spread between ensemble members of simulated snowpack, which typically occurs for a long time with 100% snow cover fraction (SCF) or snow-free conditions. Here, we apply a hybrid DA method, in which direct insertion (DI) is a supplement of the ensemble square root filter (EnSRF), to assimilate the spaceborne SCF into a land surface model, driven by China Meteorological Administration Land Data Assimilation System high-resolution climate forcings over northern China during the snow season in 2021/22. Compared to the open-loop experiment (without SCF assimilation), the root-mean-square error (RMSE) of SCF is reduced by 6% through the original EnSRF and is even lower (by 14%) in the combined DI and EnSRF (EnSRFDI) experiment. The results reveal the ability of both EnSRF and EnSRFDI to improve the SCF estimation over regions where the snow cover is low, while only EnSRFDI is able to efficiently reduce the RMSE over areas with high SCF. Moreover, the SCF assimilation is also observed to improve the snow depth and soil temperature simulations, with the Kling–Gupta efficiency (KGE) increasing at 60% and 56%–70% stations, respectively, particularly under conditions with near-freezing temperature, in which reliable simulations are typically challenging. Our results demonstrate that the EnSRFDI hybrid method can be applied for the assimilation of spaceborne observational snow cover to improve land surface simulations and snow-related operational products. Significance Statement Due to the small spread between the seasonal snowpack of ensemble simulations, ensemble snow cover fraction (SCF) data assimilation (DA) proves to be ineffective. Therefore, we apply a hybrid method that combines the direct insertion (DI) and ensemble square root filter (EnSRF) to assimilate the spaceborne SCF into a land surface model (LSM) driven by high-resolution climate forcings. Our results reveal the applicability of the EnSRFDI to further improve snow cover simulations over regions with high SCF. Furthermore, the DA experiments were validated through a large number of in situ observations from the China Meteorological Administration. The uncertainties of snow depth and soil temperature simulations are also slightly reduced by the SCF DAs, particularly over regions with a poor LSM performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JJJHHHQQQ给JJJHHHQQQ的求助进行了留言
1秒前
追寻绮彤完成签到,获得积分10
2秒前
共享精神应助帅气板凳采纳,获得10
2秒前
科研通AI2S应助糊涂的绿茶采纳,获得10
2秒前
FashionBoy应助huang’采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
耿双发布了新的文献求助10
3秒前
Easy完成签到,获得积分10
3秒前
3秒前
3秒前
芝麻糊应助偷影子的人采纳,获得10
4秒前
4秒前
唠叨的晟睿完成签到,获得积分10
6秒前
小栗子发布了新的文献求助30
7秒前
niulugai应助Fred Guan采纳,获得50
7秒前
7秒前
alan应助飞在夏夜的猫采纳,获得10
7秒前
8秒前
小孙孙完成签到,获得积分10
8秒前
10秒前
11秒前
11秒前
情怀应助ml采纳,获得10
11秒前
11秒前
Ava应助结实的慕灵采纳,获得10
12秒前
金胖胖完成签到,获得积分10
13秒前
13秒前
冷静尔容发布了新的文献求助10
14秒前
14秒前
Owen应助Ryan采纳,获得10
14秒前
饱满的小懒猪完成签到,获得积分20
15秒前
tl完成签到,获得积分10
15秒前
SciGPT应助轻松的芷烟采纳,获得10
16秒前
小夭发布了新的文献求助10
16秒前
16秒前
17秒前
人间完成签到 ,获得积分10
17秒前
18秒前
MQRR发布了新的文献求助30
19秒前
一路向南完成签到 ,获得积分10
19秒前
高分求助中
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
Mantodea of the World: Species Catalog Andrew M 500
Insecta 2. Blattodea, Mantodea, Isoptera, Grylloblattodea, Phasmatodea, Dermaptera and Embioptera 500
The Oxford Handbook of Transcranial Stimulation (the second edition) 300
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3438077
求助须知:如何正确求助?哪些是违规求助? 3034979
关于积分的说明 8956792
捐赠科研通 2723013
什么是DOI,文献DOI怎么找? 1493684
科研通“疑难数据库(出版商)”最低求助积分说明 690347
邀请新用户注册赠送积分活动 686758