亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Unsupervised many-to-many stain translation for histological image augmentation to improve classification accuracy

计算机科学 污渍 翻译(生物学) 人工智能 图像翻译 模式识别(心理学) 上下文图像分类 图像(数学) 自然语言处理 情报检索 病理 医学 生物 染色 生物化学 信使核糖核酸 基因
作者
Maryam Berijanian,Nadine S. Schaadt,Boqiang Huang,Johannes Lotz,Friedrich Feuerhake,Dorit Merhof
出处
期刊:Journal of pathology informatics [Medknow Publications]
卷期号:14: 100195-100195 被引量:3
标识
DOI:10.1016/j.jpi.2023.100195
摘要

Deep learning tasks, which require large numbers of images, are widely applied in digital pathology. This poses challenges especially for supervised tasks since manual image annotation is an expensive and laborious process. This situation deteriorates even more in the case of a large variability of images. Coping with this problem requires methods such as image augmentation and synthetic image generation. In this regard, unsupervised stain translation via GANs has gained much attention recently, but a separate network must be trained for each pair of source and target domains. This work enables unsupervised many-to-many translation of histopathological stains with a single network while seeking to maintain the shape and structure of the tissues.StarGAN-v2 is adapted for unsupervised many-to-many stain translation of histopathology images of breast tissues. An edge detector is incorporated to motivate the network to maintain the shape and structure of the tissues and to have an edge-preserving translation. Additionally, a subjective test is conducted on medical and technical experts in the field of digital pathology to evaluate the quality of generated images and to verify that they are indistinguishable from real images. As a proof of concept, breast cancer classifiers are trained with and without the generated images to quantify the effect of image augmentation using the synthetized images on classification accuracy.The results show that adding an edge detector helps to improve the quality of translated images and to preserve the general structure of tissues. Quality control and subjective tests on our medical and technical experts show that the real and artificial images cannot be distinguished, thereby confirming that the synthetic images are technically plausible. Moreover, this research shows that, by augmenting the training dataset with the outputs of the proposed stain translation method, the accuracy of breast cancer classifier with ResNet-50 and VGG-16 improves by 8.0% and 9.3%, respectively.This research indicates that a translation from an arbitrary source stain to other stains can be performed effectively within the proposed framework. The generated images are realistic and could be employed to train deep neural networks to improve their performance and cope with the problem of insufficient numbers of annotated images.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
草木青发布了新的文献求助10
10秒前
jhhh发布了新的文献求助10
19秒前
闲听花落完成签到 ,获得积分10
22秒前
陶醉觅夏发布了新的文献求助100
31秒前
chunjianghua完成签到,获得积分10
40秒前
chunjianghua发布了新的文献求助10
46秒前
Ava应助DueR采纳,获得10
53秒前
55秒前
谦谦神棍完成签到,获得积分10
57秒前
CipherSage应助Pawn采纳,获得10
59秒前
满意人英完成签到,获得积分10
1分钟前
1分钟前
领导范儿应助科研通管家采纳,获得10
1分钟前
下文献的蜉蝣完成签到 ,获得积分10
1分钟前
2分钟前
zz完成签到,获得积分10
2分钟前
Lin完成签到,获得积分10
2分钟前
2分钟前
onecloudhere发布了新的文献求助10
2分钟前
2分钟前
千纸鹤完成签到 ,获得积分10
2分钟前
mint发布了新的文献求助10
2分钟前
2分钟前
Wilson完成签到 ,获得积分10
2分钟前
Owen应助ln采纳,获得10
2分钟前
2分钟前
桃子爱学习完成签到 ,获得积分10
2分钟前
2分钟前
cwy完成签到,获得积分10
2分钟前
三点水发布了新的文献求助10
3分钟前
修水县1个科研人完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
123发布了新的文献求助10
3分钟前
ln发布了新的文献求助10
3分钟前
安详无心发布了新的文献求助30
3分钟前
3分钟前
充电宝应助黎乐乐采纳,获得30
3分钟前
小明月发布了新的文献求助10
3分钟前
高分求助中
Востребованный временем 2500
Hopemont Capacity Assessment Interview manual and scoring guide 1000
Injection and Compression Molding Fundamentals 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
Mantids of the euro-mediterranean area 600
The Oxford Handbook of Educational Psychology 600
Mantodea of the World: Species Catalog Andrew M 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 内科学 物理 纳米技术 计算机科学 基因 遗传学 化学工程 复合材料 免疫学 物理化学 细胞生物学 催化作用 病理
热门帖子
关注 科研通微信公众号,转发送积分 3422838
求助须知:如何正确求助?哪些是违规求助? 3023221
关于积分的说明 8903841
捐赠科研通 2710590
什么是DOI,文献DOI怎么找? 1486605
科研通“疑难数据库(出版商)”最低求助积分说明 687127
邀请新用户注册赠送积分活动 682330