Query Path Generation via Bidirectional Reasoning for Multihop Question Answering From Knowledge Bases

计算机科学 限制 知识图 关系(数据库) 封面(代数) 答疑 路径(计算) 知识库 知识表示与推理 召回 图形 代表(政治) 编码(内存) 理论计算机科学 人工智能 数据挖掘 机械工程 工程类 语言学 哲学 政治 法学 政治学 程序设计语言
作者
Geng Zhang,Jin Liu,Guangyou Zhou,Zhiwen Xie,Xiao Yu,Xiaohui Cui
出处
期刊:IEEE Transactions on Cognitive and Developmental Systems [Institute of Electrical and Electronics Engineers]
卷期号:15 (3): 1183-1195 被引量:9
标识
DOI:10.1109/tcds.2022.3198272
摘要

Multihop question answering from knowledge bases (KBQA) is a hot research topic in natural language processing. Recently, the graph neural network-based (GNN-based) methods have achieved promising results as the KB can be organized as a knowledge graph (KG). However, they often suffered from the sparsity of the KG which was detrimental to the structure encoding and reasoning capabilities of GNN. Specifically, a KG is a sparse graph linked by directed relations and previous studies have paid scant attention to the directional characteristic of relations in the KG, limiting the patterns of relation path that GNN-based approaches could resolve. This study proposes a bidirectional recurrent GNN (BRGNN) to tackle these difficulties. To model the bidirectional information of relations, all adjacent relations of an entity are grouped by their directions, and they are separately aggregated into the entity representation in outward and inward directions. For the reasoning process, BRGNN simultaneously considers the neighbor relations in both directions to cover more patterns of relation paths and improve the recall of answers. Extensive experiments on three benchmarks: WebQuestionsSP, ComplexWebQuestions, and MetaQA, verify that BRGNN can answer more questions by taking into account the directional information, and it is competitive to all state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助科研通管家采纳,获得10
刚刚
axin应助科研通管家采纳,获得10
刚刚
丘比特应助科研通管家采纳,获得10
刚刚
小蘑菇应助科研通管家采纳,获得10
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
无花果应助科研通管家采纳,获得10
刚刚
刚刚
李健应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得10
刚刚
Ava应助科研通管家采纳,获得10
刚刚
Hello应助科研通管家采纳,获得10
1秒前
lu应助科研通管家采纳,获得10
1秒前
1秒前
华仔应助科研通管家采纳,获得10
1秒前
研友_MLJldZ发布了新的文献求助10
1秒前
wys完成签到 ,获得积分10
2秒前
3秒前
michaelvin完成签到,获得积分10
3秒前
学术大白完成签到 ,获得积分10
6秒前
6秒前
SYT完成签到,获得积分10
7秒前
8秒前
10秒前
10秒前
10秒前
11秒前
11秒前
魏伯安发布了新的文献求助10
11秒前
11秒前
zhouleiwang完成签到,获得积分10
12秒前
李爱国应助aiming采纳,获得10
13秒前
无奈傲菡完成签到,获得积分10
14秒前
TT发布了新的文献求助10
14秒前
啦啦啦发布了新的文献求助10
15秒前
sun发布了新的文献求助10
16秒前
荣荣完成签到,获得积分10
16秒前
17秒前
小安完成签到,获得积分10
18秒前
Spencer完成签到 ,获得积分10
18秒前
PengHu完成签到,获得积分10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849