Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer

医学 组织学 三阴性乳腺癌 乳腺癌 H&E染色 数字化病理学 外科肿瘤学 新辅助治疗 人工智能 病理 机器学习 肿瘤科 癌症 内科学 计算机科学 免疫组织化学
作者
Timothy B. Fisher,Geetanjali Saini,T. S. Rekha,Jayashree Krishnamurthy,Shristi Bhattarai,Grace Callagy,Mark Webber,Emiel A. M. Janssen,Jun Kong,Ritu Aneja
出处
期刊:Breast Cancer Research [Springer Nature]
卷期号:26 (1) 被引量:7
标识
DOI:10.1186/s13058-023-01752-y
摘要

Abstract Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30–40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60–70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6应助lvzhechen采纳,获得10
刚刚
耿春丽完成签到 ,获得积分10
刚刚
欣喜翠丝发布了新的文献求助10
刚刚
共享精神应助zai采纳,获得10
刚刚
万能图书馆应助豆包_P12345采纳,获得10
1秒前
潇洒的水蓉完成签到,获得积分10
1秒前
血鸚鵡发布了新的文献求助20
1秒前
敏感雅香发布了新的文献求助10
2秒前
苗松发布了新的文献求助10
2秒前
方易烟完成签到,获得积分10
3秒前
飞快的从丹完成签到,获得积分10
3秒前
英俊的铭应助岁岁采纳,获得10
3秒前
科研通AI6应助ray采纳,获得10
4秒前
KCMd完成签到,获得积分10
4秒前
邱穗发布了新的文献求助10
4秒前
zhz完成签到,获得积分10
4秒前
hey应助Wayne采纳,获得10
5秒前
6秒前
7秒前
Rita完成签到,获得积分10
7秒前
7秒前
Lin完成签到,获得积分10
9秒前
李健的小迷弟应助xny采纳,获得10
9秒前
9秒前
10秒前
共享精神应助YR采纳,获得10
10秒前
四顾剑发布了新的文献求助10
11秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
九日橙发布了新的文献求助10
12秒前
莫咏怡完成签到,获得积分10
12秒前
hustzwqq完成签到,获得积分10
12秒前
111完成签到 ,获得积分10
12秒前
MelonWong发布了新的文献求助10
12秒前
泡芙完成签到,获得积分10
12秒前
ray发布了新的文献求助10
12秒前
小二郎应助sda采纳,获得10
13秒前
打打应助朱朱采纳,获得10
13秒前
酷炫的飞阳完成签到,获得积分20
13秒前
AH106应助will采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
按地区划分的1,091个公共养老金档案列表 801
The International Law of the Sea (fourth edition) 800
Machine Learning for Polymer Informatics 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5409878
求助须知:如何正确求助?哪些是违规求助? 4527416
关于积分的说明 14110521
捐赠科研通 4441833
什么是DOI,文献DOI怎么找? 2437651
邀请新用户注册赠送积分活动 1429598
关于科研通互助平台的介绍 1407728