Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer

医学 组织学 三阴性乳腺癌 乳腺癌 H&E染色 数字化病理学 外科肿瘤学 新辅助治疗 人工智能 病理 机器学习 肿瘤科 癌症 内科学 计算机科学 免疫组织化学
作者
Timothy B. Fisher,Geetanjali Saini,T. S. Rekha,Jayashree Krishnamurthy,Shristi Bhattarai,Grace Callagy,Mark Webber,Emiel A. M. Janssen,Jun Kong,Ritu Aneja
出处
期刊:Breast Cancer Research [Springer Nature]
卷期号:26 (1) 被引量:7
标识
DOI:10.1186/s13058-023-01752-y
摘要

Abstract Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30–40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60–70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
2秒前
3秒前
4秒前
翟函发布了新的文献求助10
5秒前
LF9979发布了新的文献求助10
5秒前
Hello应助吱哦周采纳,获得10
6秒前
6秒前
7秒前
7秒前
7秒前
9秒前
Liy发布了新的文献求助10
9秒前
独特靖巧发布了新的文献求助10
10秒前
拜拜了您嘞完成签到,获得积分10
12秒前
jagger完成签到,获得积分10
15秒前
15秒前
16秒前
小二郎应助da白采纳,获得10
17秒前
17秒前
Aimee完成签到,获得积分10
18秒前
CipherSage应助格格采纳,获得10
19秒前
甜甜纲手完成签到,获得积分10
19秒前
gxmu6322完成签到,获得积分10
20秒前
852应助吃饭饭采纳,获得10
20秒前
星辰大海应助奥利奥采纳,获得10
20秒前
wx发布了新的文献求助10
22秒前
haixia发布了新的文献求助10
22秒前
吱哦周发布了新的文献求助10
23秒前
大个应助眼里有星辰采纳,获得10
23秒前
24秒前
香蕉觅云应助Again采纳,获得10
24秒前
bkagyin应助微笑的千山采纳,获得10
26秒前
wonderbgt完成签到,获得积分0
26秒前
28秒前
黙宇循光发布了新的文献求助10
28秒前
28秒前
小二郎应助木棉采纳,获得10
30秒前
少喝水呀完成签到,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 1000
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
How Maoism Was Made: Reconstructing China, 1949-1965 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313931
求助须知:如何正确求助?哪些是违规求助? 2946299
关于积分的说明 8529491
捐赠科研通 2621940
什么是DOI,文献DOI怎么找? 1434230
科研通“疑难数据库(出版商)”最低求助积分说明 665175
邀请新用户注册赠送积分活动 650738