Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer

医学 组织学 三阴性乳腺癌 乳腺癌 H&E染色 数字化病理学 外科肿瘤学 新辅助治疗 人工智能 病理 机器学习 肿瘤科 癌症 内科学 计算机科学 免疫组织化学
作者
Timothy B. Fisher,Geetanjali Saini,T. S. Rekha,Jayashree Krishnamurthy,Shristi Bhattarai,Grace Callagy,Mark Webber,Emiel A. M. Janssen,Jun Kong,Ritu Aneja
出处
期刊:Breast Cancer Research [BioMed Central]
卷期号:26 (1) 被引量:7
标识
DOI:10.1186/s13058-023-01752-y
摘要

Abstract Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30–40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60–70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助ZBW采纳,获得10
刚刚
旺仔先生完成签到,获得积分0
1秒前
1秒前
Answer完成签到,获得积分10
1秒前
Lucas应助颜云尔采纳,获得10
1秒前
卡卡龍特发布了新的文献求助10
1秒前
领导范儿应助mrz采纳,获得10
2秒前
NexusExplorer应助Giroro_roro采纳,获得10
2秒前
琉璃完成签到 ,获得积分10
2秒前
一粟的粉r发布了新的文献求助10
3秒前
深情安青应助Jiang采纳,获得10
3秒前
李健的小迷弟应助筋筋子采纳,获得10
3秒前
ipan918完成签到,获得积分10
3秒前
jaya发布了新的文献求助10
3秒前
迅速雨琴发布了新的文献求助10
4秒前
所所应助乔乔采纳,获得10
4秒前
自然1111发布了新的文献求助10
4秒前
4秒前
5秒前
wcy完成签到 ,获得积分10
5秒前
量子星尘发布了新的文献求助10
5秒前
Lucas选李华完成签到 ,获得积分10
6秒前
6秒前
6秒前
orixero应助Hannah采纳,获得10
6秒前
poem发布了新的文献求助10
7秒前
我是老大应助xiaomili采纳,获得10
7秒前
搜集达人应助青青在努力采纳,获得10
8秒前
8秒前
8秒前
happyfei发布了新的文献求助10
9秒前
mmol完成签到,获得积分10
9秒前
9秒前
聪慧千亦发布了新的文献求助10
9秒前
weixiaozdw完成签到,获得积分10
9秒前
10秒前
外向跳跳糖完成签到,获得积分20
10秒前
孙福禄应助机智一曲采纳,获得10
10秒前
forever完成签到,获得积分10
11秒前
萧小五发布了新的文献求助10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620