Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer

医学 组织学 三阴性乳腺癌 乳腺癌 H&E染色 数字化病理学 外科肿瘤学 新辅助治疗 人工智能 病理 机器学习 肿瘤科 癌症 内科学 计算机科学 免疫组织化学
作者
Timothy B. Fisher,Geetanjali Saini,T. S. Rekha,Jayashree Krishnamurthy,Shristi Bhattarai,Grace Callagy,Mark Webber,Emiel A. M. Janssen,Jun Kong,Ritu Aneja
出处
期刊:Breast Cancer Research [BioMed Central]
卷期号:26 (1) 被引量:7
标识
DOI:10.1186/s13058-023-01752-y
摘要

Abstract Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30–40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60–70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鲨鲨鲨鱼完成签到,获得积分10
1秒前
李爱国应助WUWU2435采纳,获得10
1秒前
2秒前
@你。发布了新的文献求助10
3秒前
大白发布了新的文献求助10
3秒前
pjm发布了新的文献求助10
4秒前
MMTI完成签到,获得积分10
4秒前
麕麕完成签到 ,获得积分10
4秒前
5秒前
5秒前
yes完成签到,获得积分10
5秒前
三金完成签到,获得积分10
6秒前
6秒前
赖林完成签到,获得积分10
6秒前
blue应助ardejiang采纳,获得20
7秒前
走之儿完成签到,获得积分10
9秒前
大椒完成签到 ,获得积分10
10秒前
10秒前
pjm完成签到,获得积分20
10秒前
11秒前
张书源完成签到 ,获得积分10
11秒前
鎏祈完成签到 ,获得积分10
11秒前
烟花应助大白采纳,获得10
13秒前
Dejavue发布了新的文献求助10
15秒前
catch完成签到,获得积分10
15秒前
Zhai发布了新的文献求助10
16秒前
18秒前
这次会赢吗完成签到,获得积分10
18秒前
kirto完成签到,获得积分10
20秒前
an完成签到,获得积分10
20秒前
踏实十八发布了新的文献求助10
20秒前
刘梓应助眼睛大天思采纳,获得20
20秒前
努力加油煤老八完成签到 ,获得积分0
20秒前
刘佳完成签到 ,获得积分10
22秒前
sinlar发布了新的文献求助10
22秒前
Dejavue完成签到,获得积分10
23秒前
23秒前
SciGPT应助七七采纳,获得10
25秒前
张六六发布了新的文献求助10
25秒前
YXYYXY完成签到,获得积分10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Target genes for RNAi in pest control: A comprehensive overview 600
The Social Work Ethics Casebook(2nd,Frederic G. R) 600
HEAT TRANSFER EQUIPMENT DESIGN Advanced Study Institute Book 500
Master Curve-Auswertungen und Untersuchung des Größeneffekts für C(T)-Proben - aktuelle Erkenntnisse zur Untersuchung des Master Curve Konzepts für ferritisches Gusseisen mit Kugelgraphit bei dynamischer Beanspruchung (Projekt MCGUSS) 500
Design and Development of A CMOS Integrated Multimodal Sensor System with Carbon Nano-electrodes for Biosensor Applications 500
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5109850
求助须知:如何正确求助?哪些是违规求助? 4318475
关于积分的说明 13454352
捐赠科研通 4148445
什么是DOI,文献DOI怎么找? 2273185
邀请新用户注册赠送积分活动 1275349
关于科研通互助平台的介绍 1213641