Digital image analysis and machine learning-assisted prediction of neoadjuvant chemotherapy response in triple-negative breast cancer

医学 组织学 三阴性乳腺癌 乳腺癌 H&E染色 数字化病理学 外科肿瘤学 新辅助治疗 人工智能 病理 机器学习 肿瘤科 癌症 内科学 计算机科学 免疫组织化学
作者
Timothy B. Fisher,Geetanjali Saini,T. S. Rekha,Jayashree Krishnamurthy,Shristi Bhattarai,Grace Callagy,Mark Webber,Emiel A. M. Janssen,Jun Kong,Ritu Aneja
出处
期刊:Breast Cancer Research [Springer Nature]
卷期号:26 (1) 被引量:7
标识
DOI:10.1186/s13058-023-01752-y
摘要

Abstract Background Pathological complete response (pCR) is associated with favorable prognosis in patients with triple-negative breast cancer (TNBC). However, only 30–40% of TNBC patients treated with neoadjuvant chemotherapy (NAC) show pCR, while the remaining 60–70% show residual disease (RD). The role of the tumor microenvironment in NAC response in patients with TNBC remains unclear. In this study, we developed a machine learning-based two-step pipeline to distinguish between various histological components in hematoxylin and eosin (H&E)-stained whole slide images (WSIs) of TNBC tissue biopsies and to identify histological features that can predict NAC response. Methods H&E-stained WSIs of treatment-naïve biopsies from 85 patients (51 with pCR and 34 with RD) of the model development cohort and 79 patients (41 with pCR and 38 with RD) of the validation cohort were separated through a stratified eightfold cross-validation strategy for the first step and leave-one-out cross-validation strategy for the second step. A tile-level histology label prediction pipeline and four machine-learning classifiers were used to analyze 468,043 tiles of WSIs. The best-trained classifier used 55 texture features from each tile to produce a probability profile during testing. The predicted histology classes were used to generate a histology classification map of the spatial distributions of different tissue regions. A patient-level NAC response prediction pipeline was trained with features derived from paired histology classification maps. The top graph-based features capturing the relevant spatial information across the different histological classes were provided to the radial basis function kernel support vector machine (rbfSVM) classifier for NAC treatment response prediction. Results The tile-level prediction pipeline achieved 86.72% accuracy for histology class classification, while the patient-level pipeline achieved 83.53% NAC response (pCR vs. RD) prediction accuracy of the model development cohort. The model was validated with an independent cohort with tile histology validation accuracy of 83.59% and NAC prediction accuracy of 81.01%. The histological class pairs with the strongest NAC response predictive ability were tumor and tumor tumor-infiltrating lymphocytes for pCR and microvessel density and polyploid giant cancer cells for RD. Conclusion Our machine learning pipeline can robustly identify clinically relevant histological classes that predict NAC response in TNBC patients and may help guide patient selection for NAC treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陌路人完成签到,获得积分10
刚刚
阿may完成签到,获得积分10
刚刚
科研通AI6应助aafrr采纳,获得10
刚刚
烟花应助齐齐采纳,获得10
1秒前
yyy完成签到,获得积分10
1秒前
1秒前
oc666888完成签到,获得积分10
1秒前
二丫完成签到,获得积分10
2秒前
2秒前
开心果完成签到,获得积分10
2秒前
coldspringhao完成签到,获得积分10
3秒前
666发布了新的文献求助10
3秒前
温暖的季节完成签到,获得积分10
3秒前
阿苏完成签到 ,获得积分10
4秒前
lph完成签到 ,获得积分10
4秒前
新手菜鸟完成签到,获得积分10
4秒前
赵正洁完成签到 ,获得积分10
5秒前
5秒前
小西完成签到,获得积分10
5秒前
完美世界应助YiWei采纳,获得10
5秒前
大明发布了新的文献求助10
5秒前
轻松雨旋完成签到 ,获得积分10
5秒前
wxb完成签到,获得积分10
6秒前
明明ming999_完成签到,获得积分10
6秒前
111发布了新的文献求助10
6秒前
自然的代亦完成签到,获得积分10
6秒前
wpf7848完成签到,获得积分10
7秒前
7秒前
7秒前
慕容松发布了新的文献求助10
8秒前
123321完成签到 ,获得积分10
8秒前
李健应助Fledge采纳,获得10
8秒前
小蘑菇应助无限的绮晴采纳,获得10
8秒前
azusa发布了新的文献求助10
8秒前
淡墨完成签到,获得积分10
8秒前
TG303完成签到,获得积分10
9秒前
朱朱朱完成签到,获得积分10
10秒前
Colin_Chen完成签到,获得积分10
10秒前
anna完成签到,获得积分10
10秒前
monoklatt完成签到,获得积分10
10秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5337306
求助须知:如何正确求助?哪些是违规求助? 4474593
关于积分的说明 13924876
捐赠科研通 4369460
什么是DOI,文献DOI怎么找? 2400826
邀请新用户注册赠送积分活动 1393929
关于科研通互助平台的介绍 1365753