Global estimation of phytoplankton pigment concentrations from satellite data using a deep-learning-based model

环境科学 浮游植物 卫星 遥感 颜料 海洋色 岩藻黄质 化学 地质学 生物 生态学 营养物 工程类 航空航天工程 有机化学
作者
Xiaolong Li,Yi Yang,Joji Ishizaka,Xiaofeng Li
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:294: 113628-113628 被引量:4
标识
DOI:10.1016/j.rse.2023.113628
摘要

Based on a global matchup between satellite observations and high performance liquid chromatography (HPLC) measurements, we developed a deep-learning-based model (DL-PPCE model) for globally estimating concentrations of 17 different phytoplankton pigments. The model adopted a fusion architecture of residual and pyramid networks to achieve robust estimation performance. The model inputs include three different data types: essential ocean color parameters, satellite-derived environmental parameters, and the slope of above-surface remote-sensing reflectance (Rrs). We compared the model performances with various input parameters to determine the most effective inputs. The results showed that Rrs in the essential ocean color parameters and sea surface temperature (SST) in the environmental parameters were the most critical input parameters. The estimation of phytoplankton pigment concentrations was validated against HPLC data using the leave-one-out cross-validation method. Except for three pigments, 19′-butanoyloxy-fucoxanthin, prasinoxanthin, and lutein, the estimated pigment concentrations and in-situ observations were strongly correlated for all other pigments (an average relative root-mean-square error of 0.59, R2≥0.60, and regression slopes close to 1). In addition, a time series analysis was performed on the MODIS retrieved global pigment concentrations during 2003–2021 using the established DL-PPCE model to explore the relationship between the distribution of phytoplankton groups and El Niño in the western equatorial Pacific. Our findings revealed that the prokaryotes-dominated area extended eastward from180°E to 150°W during the 2015/2016 El Niño event. From 2003 to 2021, prokaryotic abundance was positively correlated with El Niño intensity (R=0.65,P≪0.01) but negatively correlated with the abundance of the entire phytoplankton community (R=−0.53,P≪0.01). These results demonstrate that the DL-PPCE model presents a novel approach for estimating the concentration of 17 pigments worldwide, and the estimated pigment concentrations are advantageous for analyzing the phytoplankton community dynamics on a large spatiotemporal scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
超级无敌霹雳喷火霸王龙完成签到 ,获得积分10
刚刚
刚刚
小洪俊熙给陶l的求助进行了留言
1秒前
发的不太好完成签到,获得积分10
1秒前
1秒前
2秒前
老神在在完成签到,获得积分10
2秒前
英姑应助YuGe采纳,获得10
3秒前
3秒前
3秒前
研友_VZG7GZ应助哼哼哈嘿采纳,获得10
3秒前
小二郎应助DONGmumu采纳,获得10
3秒前
希望天下0贩的0应助Tree采纳,获得10
4秒前
pantene完成签到,获得积分10
4秒前
史塔西发布了新的文献求助10
4秒前
4秒前
希望天下0贩的0应助雪雪采纳,获得50
4秒前
4秒前
4秒前
虚心醉蝶完成签到 ,获得积分10
5秒前
5秒前
petrichor完成签到 ,获得积分10
5秒前
exquisite完成签到,获得积分10
5秒前
xie老板完成签到,获得积分10
5秒前
YYJ发布了新的文献求助10
5秒前
安详的语蕊完成签到,获得积分10
6秒前
刘凯鑫完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
严晓黎完成签到 ,获得积分10
8秒前
哈哈就是你哦完成签到,获得积分10
8秒前
jin发布了新的文献求助10
8秒前
8秒前
杜11发布了新的文献求助10
8秒前
科研通AI5应助王大力采纳,获得10
8秒前
光亮向露完成签到,获得积分10
8秒前
学术卷心菜完成签到,获得积分10
9秒前
笨笨乐枫发布了新的文献求助10
9秒前
满意的柏柳完成签到 ,获得积分10
10秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729613
求助须知:如何正确求助?哪些是违规求助? 3274653
关于积分的说明 9987684
捐赠科研通 2989926
什么是DOI,文献DOI怎么找? 1640809
邀请新用户注册赠送积分活动 779408
科研通“疑难数据库(出版商)”最低求助积分说明 748217