Chinese Named Entity Recognition method based on multi-feature fusion and biaffine

计算机科学 拼音 Glyph(数据可视化) 人工智能 特征(语言学) 自然语言处理 命名实体识别 语义学(计算机科学) 模式识别(心理学) 任务(项目管理) 汉字 可视化 语言学 哲学 经济 管理 程序设计语言
作者
Xiaohua Ke,Xiaobo Wu,Zexian Ou,Binglong Li
出处
期刊:Complex & Intelligent Systems 被引量:1
标识
DOI:10.1007/s40747-024-01464-6
摘要

Abstract Chinese Named Entity Recognition (CNER) focuses on precisely identifying predefined structural categories in unstructured Chinese text. Most existing CNER models do not consider the unique glyph and pinyin features of Chinese characters, but the rich semantic features hidden behind these features have a good effect on enhancing the judgment ability of language models. At the same time, it is difficult to identify the boundaries of Chinese nested entities, and accurately identifying the boundaries of entities within nested entities is also a difficult problem to solve. We propose a CNER method based on multi-feature fusion technology and biaffine mechanism to address the above issues: In the input representation layer, integrate the glyph and pinyin features of Chinese characters together, intuitively capturing the semantics of Chinese characters. Furthermore, biaffine mechanism has been introduced to provide a comprehensive view of the input on a global scale. This mechanism effectively converts the task of entity recognition into a problem of assigning scores to spans, hence enhancing the precision of identifying entity borders. In order to evaluate the efficacy of the model, a series of experiments were done on three Chinese entity recognition datasets: Resume, MSRA, and People Daily. The experimental results show that the solid boundary can be identified more accurately, and the F1 values of 96.49%, 96.26% and 96.19% are obtained respectively, which has a better recognition effect than the baseline model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wzzz完成签到 ,获得积分10
1秒前
2秒前
2秒前
2秒前
Ava应助海产姐妹yyds采纳,获得10
2秒前
yuan完成签到,获得积分20
3秒前
lin发布了新的文献求助10
4秒前
Jeremy完成签到 ,获得积分10
4秒前
华仔应助你爱我我爱你采纳,获得10
5秒前
学分完成签到 ,获得积分10
5秒前
5秒前
hk发布了新的文献求助10
5秒前
yuan发布了新的文献求助10
6秒前
7秒前
吴蹇发布了新的文献求助10
7秒前
北辰发布了新的文献求助30
7秒前
XLY关闭了XLY文献求助
7秒前
8秒前
10秒前
阿文发布了新的文献求助10
11秒前
11秒前
葳蕤完成签到,获得积分10
11秒前
12秒前
DE2022发布了新的文献求助10
13秒前
zhaoa完成签到,获得积分20
13秒前
高亚飞机发布了新的文献求助200
14秒前
12发布了新的文献求助10
14秒前
15秒前
桐桐应助快看小花123采纳,获得10
15秒前
爆米花应助noah采纳,获得10
15秒前
我想当二郎神完成签到,获得积分10
15秒前
16秒前
AppleDog发布了新的文献求助10
17秒前
17秒前
18秒前
19秒前
111发布了新的文献求助10
20秒前
yin发布了新的文献求助10
20秒前
冰清玉洁完成签到,获得积分10
21秒前
21秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233445
求助须知:如何正确求助?哪些是违规求助? 2879969
关于积分的说明 8213423
捐赠科研通 2547415
什么是DOI,文献DOI怎么找? 1376927
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623150