An explainable stacking-based approach for accelerating the prediction of antidiabetic peptides

计算机科学 机器学习 人工智能 特征选择 分类器(UML) 预测建模 糖尿病 相关性 Boosting(机器学习) 医学 数学 几何学 内分泌学
作者
Farwa Arshad,Saeed Ahmed,Aqsa Amjad,Muhammad Kabir
出处
期刊:Analytical Biochemistry [Elsevier BV]
卷期号:691: 115546-115546 被引量:1
标识
DOI:10.1016/j.ab.2024.115546
摘要

Diabetes is a chronic disease that is characterized by high blood sugar levels and can have several harmful outcomes. Hyperglycemia, which is defined by persistently elevated blood sugar, is one of the primary concerns. People can improve their overall well-being and get optimal health outcomes by prioritizing diabetes control. Although the use of experimental approaches in diabetes treatment is cost-effective, it necessitates the development of many strategies for evaluating the efficacy of therapies. Researchers can quickly create new strategies for managing diabetes and get vital insights by enabling virtual screening with computational tools and procedures. In this study, we suggest a predictor named STADIP (STacking-based predictor for AntiDiabetic Peptides), a new method to predict antidiabetic peptides (ADPs) utilizing a stacked-based ensemble approach. It uses 12 different feature encodings and seven machine-learning techniques to construct 84 baseline models. The impacts of various baseline models on ADP prediction were then thoroughly examined. A two-step feature selection method, eXtreme Gradient Boosting with Sequential Forward Selection (XGB-SFS), was employed to determine the optimal number, out of 84 PFs to enhance predictive performance. Subsequently, utilizing the meta-predictor approach, 45 selected PFs were integrated into an XGB classifier to formulate the final hybrid model. The proposed method demonstrated superior predictive capabilities compared to constituent baseline models, as evidenced by evaluations on both cross-validation and independent tests. During extensive independent testing, STADIP achieved promising performance with accuracy and mathew's correlation coefficient of 0.954 and 0.877, respectively. It is anticipated that it will be useful tool in helping the scientific community to identify new antidiabetic proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
木卷可待完成签到,获得积分10
1秒前
2秒前
丹丹子完成签到 ,获得积分10
2秒前
dcc完成签到,获得积分10
2秒前
ZhaoCun完成签到,获得积分10
2秒前
novose完成签到,获得积分10
2秒前
jake完成签到,获得积分10
3秒前
只吃饭不洗碗完成签到,获得积分10
3秒前
呼呼呼完成签到,获得积分10
3秒前
呵呵喊我完成签到,获得积分10
3秒前
4秒前
4秒前
夏天无完成签到 ,获得积分10
4秒前
岗岗完成签到,获得积分20
5秒前
123456完成签到,获得积分10
6秒前
joy发布了新的文献求助10
6秒前
6秒前
7秒前
kk完成签到 ,获得积分10
7秒前
8秒前
yuewang完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
沉默的阁发布了新的文献求助10
9秒前
YUMI发布了新的文献求助10
9秒前
李博文完成签到,获得积分10
10秒前
10秒前
Herrily完成签到,获得积分10
10秒前
王先生完成签到,获得积分10
10秒前
精英刺客关注了科研通微信公众号
11秒前
Leung完成签到 ,获得积分10
12秒前
赵文龙发布了新的文献求助10
12秒前
12秒前
13秒前
13秒前
积极冷霜完成签到,获得积分10
13秒前
zhuhan发布了新的文献求助10
14秒前
沙发背景墙完成签到,获得积分10
14秒前
直率的宛海完成签到,获得积分10
14秒前
15秒前
CMD完成签到 ,获得积分10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3666670
求助须知:如何正确求助?哪些是违规求助? 3225617
关于积分的说明 9764084
捐赠科研通 2935444
什么是DOI,文献DOI怎么找? 1607713
邀请新用户注册赠送积分活动 759338
科研通“疑难数据库(出版商)”最低求助积分说明 735261