Computational fluid dynamics and machine learning algorithms analysis of striking particle velocity magnitude, particle diameter, and impact time inside an acinar region of the human lung

计算流体力学 机械 拉格朗日粒子跟踪 粒子(生态学) 物理 表面张力 气流 粒径 化学 热力学 地质学 海洋学 物理化学
作者
Isabella Francis,Suvash C. Saha
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:8
标识
DOI:10.1063/5.0106594
摘要

Complementing computational fluid dynamics (CFD) simulations with machine learning algorithms is becoming increasingly popular as the combination reduces the computational time of the CFD simulations required for classifying, predicting, or optimizing the impact of geometrical and physical variables of a specific study. The main target of drug delivery studies is indicating the optimum particle diameter for targeting particular locations in the lung to achieve a desired therapeutic effect. In addition, the main goal of molecular dynamics studies is to investigate particle–lung interaction through given particle properties. Therefore, this study combines the two by numerically determining the optimum particle diameter required to obtain an ideal striking velocity magnitude (velocity at the time of striking the alveoli, i.e., deposition by sedimentation/diffusion) and impact time (time from release until deposition) inside an acinar part of the lung. At first, the striking velocity magnitudes and time for impact (two independent properties) of three different particle diameters (0.5, 1.5, and 5 μm) are computed using CFD simulations. Then, machine learning classifiers determine the particle diameter corresponding to these two independent properties. In this study, two cases are compared: A healthy acinus where a surfactant layer covers the inner surface of the alveoli providing low air–liquid surface tension values (10 mN/m), and a diseased acinus where only a water layer covers the surface causing high surface tension values (70 mN/m). In this study, the airflow velocity throughout the breathing cycle corresponds to a person with a respiratory rate of 13 breaths per minute and a volume flow rate of 6 l/min. Accurate machine learning results showed that all three particle diameters attain larger velocities and smaller impact times in a diseased acinus compared to a healthy one. In both cases, the 0.5-μm particles acquire the smallest velocities and longest impact times, while the 1.5-μm particles possess the largest velocities and shortest impact times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI6应助heyudian采纳,获得20
1秒前
halabouqii完成签到 ,获得积分10
2秒前
术4671完成签到,获得积分10
3秒前
灵巧香完成签到,获得积分10
3秒前
misong完成签到,获得积分10
4秒前
4秒前
平安发布了新的文献求助10
5秒前
Koalas应助春景当思采纳,获得10
5秒前
5秒前
8秒前
8秒前
8秒前
刘慧鑫发布了新的文献求助10
11秒前
13秒前
兔孖发布了新的文献求助10
13秒前
悠夏sunny完成签到,获得积分10
15秒前
兰兰兰发布了新的文献求助10
15秒前
15秒前
空白发布了新的文献求助10
15秒前
16秒前
Sylvia0814完成签到 ,获得积分10
16秒前
17秒前
111发布了新的文献求助10
18秒前
搜集达人应助刘慧鑫采纳,获得10
19秒前
冷傲山彤发布了新的文献求助20
20秒前
20秒前
21秒前
21秒前
YY发布了新的文献求助10
22秒前
顺心的面包完成签到,获得积分10
23秒前
25秒前
量子星尘发布了新的文献求助10
26秒前
小马甲应助osmanthus采纳,获得10
26秒前
KD发布了新的文献求助10
27秒前
唠叨的唠叨虫完成签到,获得积分10
29秒前
海边的卡卡罗特完成签到,获得积分10
32秒前
bai发布了新的文献求助10
32秒前
32秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
Textbook of Neonatal Resuscitation ® 500
Why Neuroscience Matters in the Classroom 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5050331
求助须知:如何正确求助?哪些是违规求助? 4278065
关于积分的说明 13335304
捐赠科研通 4092980
什么是DOI,文献DOI怎么找? 2239988
邀请新用户注册赠送积分活动 1246687
关于科研通互助平台的介绍 1175504