Computational fluid dynamics and machine learning algorithms analysis of striking particle velocity magnitude, particle diameter, and impact time inside an acinar region of the human lung

计算流体力学 机械 拉格朗日粒子跟踪 粒子(生态学) 物理 表面张力 气流 粒径 化学 热力学 地质学 海洋学 物理化学
作者
Isabella Francis,Suvash C. Saha
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:8
标识
DOI:10.1063/5.0106594
摘要

Complementing computational fluid dynamics (CFD) simulations with machine learning algorithms is becoming increasingly popular as the combination reduces the computational time of the CFD simulations required for classifying, predicting, or optimizing the impact of geometrical and physical variables of a specific study. The main target of drug delivery studies is indicating the optimum particle diameter for targeting particular locations in the lung to achieve a desired therapeutic effect. In addition, the main goal of molecular dynamics studies is to investigate particle–lung interaction through given particle properties. Therefore, this study combines the two by numerically determining the optimum particle diameter required to obtain an ideal striking velocity magnitude (velocity at the time of striking the alveoli, i.e., deposition by sedimentation/diffusion) and impact time (time from release until deposition) inside an acinar part of the lung. At first, the striking velocity magnitudes and time for impact (two independent properties) of three different particle diameters (0.5, 1.5, and 5 μm) are computed using CFD simulations. Then, machine learning classifiers determine the particle diameter corresponding to these two independent properties. In this study, two cases are compared: A healthy acinus where a surfactant layer covers the inner surface of the alveoli providing low air–liquid surface tension values (10 mN/m), and a diseased acinus where only a water layer covers the surface causing high surface tension values (70 mN/m). In this study, the airflow velocity throughout the breathing cycle corresponds to a person with a respiratory rate of 13 breaths per minute and a volume flow rate of 6 l/min. Accurate machine learning results showed that all three particle diameters attain larger velocities and smaller impact times in a diseased acinus compared to a healthy one. In both cases, the 0.5-μm particles acquire the smallest velocities and longest impact times, while the 1.5-μm particles possess the largest velocities and shortest impact times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
江花朝发布了新的文献求助10
1秒前
XUU发布了新的文献求助10
1秒前
认真的长颈鹿完成签到,获得积分10
2秒前
yk完成签到,获得积分10
2秒前
zxw发布了新的文献求助10
3秒前
3秒前
晨儿发布了新的文献求助20
3秒前
彭于晏应助wby采纳,获得10
4秒前
aen01完成签到,获得积分10
6秒前
123完成签到,获得积分10
6秒前
Silence完成签到,获得积分0
6秒前
善良的采蓝完成签到,获得积分10
7秒前
共享精神应助mm采纳,获得10
8秒前
shenzhou9完成签到,获得积分10
9秒前
10秒前
称心鸵鸟发布了新的文献求助10
11秒前
12秒前
灵巧夏彤完成签到 ,获得积分10
12秒前
14秒前
15秒前
深情安青应助jia采纳,获得10
15秒前
Jasper应助真吾采纳,获得10
15秒前
浮游应助LL采纳,获得10
16秒前
天天快乐应助我要文献采纳,获得10
17秒前
执念发布了新的文献求助20
17秒前
XUU完成签到,获得积分10
17秒前
melone完成签到,获得积分10
19秒前
19秒前
19秒前
19秒前
安详的面包完成签到,获得积分20
19秒前
Aruora关注了科研通微信公众号
20秒前
20秒前
wby完成签到,获得积分10
21秒前
21秒前
L拉丁是我干死的完成签到,获得积分10
22秒前
曾曾发布了新的文献求助10
24秒前
爱的看到完成签到,获得积分10
24秒前
LXX不钻牛角尖完成签到,获得积分10
24秒前
wby发布了新的文献求助10
26秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5499570
求助须知:如何正确求助?哪些是违规求助? 4596391
关于积分的说明 14454281
捐赠科研通 4529548
什么是DOI,文献DOI怎么找? 2482060
邀请新用户注册赠送积分活动 1466041
关于科研通互助平台的介绍 1438891