清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Computational fluid dynamics and machine learning algorithms analysis of striking particle velocity magnitude, particle diameter, and impact time inside an acinar region of the human lung

计算流体力学 机械 拉格朗日粒子跟踪 粒子(生态学) 物理 表面张力 气流 粒径 化学 热力学 地质学 海洋学 物理化学
作者
Isabella Francis,Suvash C. Saha
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:8
标识
DOI:10.1063/5.0106594
摘要

Complementing computational fluid dynamics (CFD) simulations with machine learning algorithms is becoming increasingly popular as the combination reduces the computational time of the CFD simulations required for classifying, predicting, or optimizing the impact of geometrical and physical variables of a specific study. The main target of drug delivery studies is indicating the optimum particle diameter for targeting particular locations in the lung to achieve a desired therapeutic effect. In addition, the main goal of molecular dynamics studies is to investigate particle–lung interaction through given particle properties. Therefore, this study combines the two by numerically determining the optimum particle diameter required to obtain an ideal striking velocity magnitude (velocity at the time of striking the alveoli, i.e., deposition by sedimentation/diffusion) and impact time (time from release until deposition) inside an acinar part of the lung. At first, the striking velocity magnitudes and time for impact (two independent properties) of three different particle diameters (0.5, 1.5, and 5 μm) are computed using CFD simulations. Then, machine learning classifiers determine the particle diameter corresponding to these two independent properties. In this study, two cases are compared: A healthy acinus where a surfactant layer covers the inner surface of the alveoli providing low air–liquid surface tension values (10 mN/m), and a diseased acinus where only a water layer covers the surface causing high surface tension values (70 mN/m). In this study, the airflow velocity throughout the breathing cycle corresponds to a person with a respiratory rate of 13 breaths per minute and a volume flow rate of 6 l/min. Accurate machine learning results showed that all three particle diameters attain larger velocities and smaller impact times in a diseased acinus compared to a healthy one. In both cases, the 0.5-μm particles acquire the smallest velocities and longest impact times, while the 1.5-μm particles possess the largest velocities and shortest impact times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Ava应助Everything采纳,获得10
11秒前
13秒前
小西完成签到 ,获得积分0
15秒前
22秒前
30秒前
30秒前
王美祥发布了新的文献求助10
35秒前
无悔完成签到 ,获得积分10
36秒前
51秒前
1分钟前
1分钟前
BowieHuang应助独特的师采纳,获得10
1分钟前
1分钟前
Everything发布了新的文献求助10
1分钟前
科研通AI2S应助VDC采纳,获得30
1分钟前
1分钟前
Everything完成签到,获得积分10
1分钟前
alex12259完成签到 ,获得积分10
2分钟前
独特的师完成签到,获得积分10
2分钟前
萝卜猪完成签到,获得积分10
2分钟前
daguan完成签到,获得积分10
3分钟前
3分钟前
moxiang发布了新的文献求助10
3分钟前
行走的猫完成签到 ,获得积分10
3分钟前
freebird应助moxiang采纳,获得10
3分钟前
可爱的函函应助moxiang采纳,获得10
3分钟前
潇洒公子完成签到 ,获得积分10
3分钟前
zydaphne完成签到 ,获得积分10
3分钟前
Ava应助Lee采纳,获得10
4分钟前
4分钟前
种下梧桐树完成签到 ,获得积分10
4分钟前
wenbo完成签到,获得积分0
4分钟前
zhangsan完成签到,获得积分10
5分钟前
woxinyouyou完成签到,获得积分0
5分钟前
量子星尘发布了新的文献求助10
5分钟前
blueskyzhi完成签到,获得积分10
5分钟前
大个应助科研通管家采纳,获得10
5分钟前
NattyPoe应助科研通管家采纳,获得10
5分钟前
香蕉觅云应助phd采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644947
求助须知:如何正确求助?哪些是违规求助? 4766578
关于积分的说明 15025983
捐赠科研通 4803298
什么是DOI,文献DOI怎么找? 2568206
邀请新用户注册赠送积分活动 1525630
关于科研通互助平台的介绍 1485175