Computational fluid dynamics and machine learning algorithms analysis of striking particle velocity magnitude, particle diameter, and impact time inside an acinar region of the human lung

计算流体力学 机械 拉格朗日粒子跟踪 粒子(生态学) 物理 表面张力 气流 粒径 化学 热力学 地质学 海洋学 物理化学
作者
Isabella Francis,Suvash C. Saha
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:8
标识
DOI:10.1063/5.0106594
摘要

Complementing computational fluid dynamics (CFD) simulations with machine learning algorithms is becoming increasingly popular as the combination reduces the computational time of the CFD simulations required for classifying, predicting, or optimizing the impact of geometrical and physical variables of a specific study. The main target of drug delivery studies is indicating the optimum particle diameter for targeting particular locations in the lung to achieve a desired therapeutic effect. In addition, the main goal of molecular dynamics studies is to investigate particle–lung interaction through given particle properties. Therefore, this study combines the two by numerically determining the optimum particle diameter required to obtain an ideal striking velocity magnitude (velocity at the time of striking the alveoli, i.e., deposition by sedimentation/diffusion) and impact time (time from release until deposition) inside an acinar part of the lung. At first, the striking velocity magnitudes and time for impact (two independent properties) of three different particle diameters (0.5, 1.5, and 5 μm) are computed using CFD simulations. Then, machine learning classifiers determine the particle diameter corresponding to these two independent properties. In this study, two cases are compared: A healthy acinus where a surfactant layer covers the inner surface of the alveoli providing low air–liquid surface tension values (10 mN/m), and a diseased acinus where only a water layer covers the surface causing high surface tension values (70 mN/m). In this study, the airflow velocity throughout the breathing cycle corresponds to a person with a respiratory rate of 13 breaths per minute and a volume flow rate of 6 l/min. Accurate machine learning results showed that all three particle diameters attain larger velocities and smaller impact times in a diseased acinus compared to a healthy one. In both cases, the 0.5-μm particles acquire the smallest velocities and longest impact times, while the 1.5-μm particles possess the largest velocities and shortest impact times.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
董老师完成签到 ,获得积分10
1秒前
123发布了新的文献求助10
3秒前
Rainlistener完成签到,获得积分10
4秒前
5秒前
8秒前
詹姆斯哈登完成签到,获得积分10
8秒前
DianaLee完成签到 ,获得积分10
11秒前
12秒前
12秒前
成为一只会科研的猫完成签到 ,获得积分10
13秒前
火星的雪完成签到 ,获得积分0
14秒前
fufufu123完成签到 ,获得积分10
14秒前
科研通AI6应助Davidjin采纳,获得10
15秒前
陈麦关注了科研通微信公众号
16秒前
淡然冬灵完成签到,获得积分10
16秒前
科研助理发布了新的文献求助10
17秒前
tangli完成签到 ,获得积分10
19秒前
CipherSage应助宜菏采纳,获得10
21秒前
jason完成签到 ,获得积分10
21秒前
恋恋青葡萄完成签到,获得积分10
22秒前
25秒前
ho完成签到,获得积分10
28秒前
LingYun完成签到,获得积分10
30秒前
yznfly应助ho采纳,获得200
33秒前
栖梧砚客完成签到 ,获得积分10
34秒前
刘歌完成签到 ,获得积分10
34秒前
Mercury完成签到 ,获得积分10
35秒前
贾方硕完成签到,获得积分10
35秒前
888完成签到,获得积分10
39秒前
Lincoln完成签到,获得积分10
40秒前
HCLonely完成签到,获得积分0
43秒前
科研通AI2S应助Muncy采纳,获得20
47秒前
量子星尘发布了新的文献求助10
49秒前
独特的秋完成签到 ,获得积分10
49秒前
吉吉国王完成签到 ,获得积分10
50秒前
52秒前
13633501455完成签到 ,获得积分10
53秒前
哎呀哎呀呀完成签到,获得积分10
54秒前
科研助理发布了新的文献求助10
55秒前
你好纠结伦完成签到,获得积分10
55秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086