亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Computational fluid dynamics and machine learning algorithms analysis of striking particle velocity magnitude, particle diameter, and impact time inside an acinar region of the human lung

计算流体力学 机械 拉格朗日粒子跟踪 粒子(生态学) 物理 表面张力 气流 粒径 化学 热力学 地质学 海洋学 物理化学
作者
Isabella Francis,Suvash C. Saha
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:8
标识
DOI:10.1063/5.0106594
摘要

Complementing computational fluid dynamics (CFD) simulations with machine learning algorithms is becoming increasingly popular as the combination reduces the computational time of the CFD simulations required for classifying, predicting, or optimizing the impact of geometrical and physical variables of a specific study. The main target of drug delivery studies is indicating the optimum particle diameter for targeting particular locations in the lung to achieve a desired therapeutic effect. In addition, the main goal of molecular dynamics studies is to investigate particle–lung interaction through given particle properties. Therefore, this study combines the two by numerically determining the optimum particle diameter required to obtain an ideal striking velocity magnitude (velocity at the time of striking the alveoli, i.e., deposition by sedimentation/diffusion) and impact time (time from release until deposition) inside an acinar part of the lung. At first, the striking velocity magnitudes and time for impact (two independent properties) of three different particle diameters (0.5, 1.5, and 5 μm) are computed using CFD simulations. Then, machine learning classifiers determine the particle diameter corresponding to these two independent properties. In this study, two cases are compared: A healthy acinus where a surfactant layer covers the inner surface of the alveoli providing low air–liquid surface tension values (10 mN/m), and a diseased acinus where only a water layer covers the surface causing high surface tension values (70 mN/m). In this study, the airflow velocity throughout the breathing cycle corresponds to a person with a respiratory rate of 13 breaths per minute and a volume flow rate of 6 l/min. Accurate machine learning results showed that all three particle diameters attain larger velocities and smaller impact times in a diseased acinus compared to a healthy one. In both cases, the 0.5-μm particles acquire the smallest velocities and longest impact times, while the 1.5-μm particles possess the largest velocities and shortest impact times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zkwgly完成签到 ,获得积分10
4秒前
Jenny完成签到,获得积分10
5秒前
25秒前
云雀完成签到,获得积分10
27秒前
云雀发布了新的文献求助30
32秒前
1分钟前
Aira发布了新的文献求助10
1分钟前
研友_ZbP41L完成签到 ,获得积分10
1分钟前
1分钟前
Steve完成签到 ,获得积分10
1分钟前
顺利山柏发布了新的文献求助10
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
1分钟前
寻道图强应助科研通管家采纳,获得30
1分钟前
我是老大应助科研通管家采纳,获得20
1分钟前
1分钟前
丘比特应助顺利山柏采纳,获得10
1分钟前
123456完成签到,获得积分10
2分钟前
123456发布了新的文献求助10
2分钟前
2分钟前
2分钟前
Joven发布了新的文献求助10
2分钟前
容若完成签到,获得积分10
2分钟前
顺利山柏发布了新的文献求助10
2分钟前
Joven完成签到,获得积分20
2分钟前
NexusExplorer应助科研小刘采纳,获得10
2分钟前
FashionBoy应助啊呜采纳,获得10
2分钟前
科研通AI2S应助科研小刘采纳,获得10
3分钟前
3分钟前
XZM发布了新的文献求助50
3分钟前
3分钟前
啊呜发布了新的文献求助10
3分钟前
啊呜完成签到,获得积分20
3分钟前
3分钟前
丘比特应助科研通管家采纳,获得10
3分钟前
Winnie完成签到,获得积分10
4分钟前
4分钟前
bixiao发布了新的文献求助10
4分钟前
sailingluwl完成签到,获得积分10
4分钟前
4分钟前
高分求助中
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
宽禁带半导体紫外光电探测器 388
Case Research: The Case Writing Process 300
Global Geological Record of Lake Basins 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3142675
求助须知:如何正确求助?哪些是违规求助? 2793563
关于积分的说明 7806945
捐赠科研通 2449831
什么是DOI,文献DOI怎么找? 1303501
科研通“疑难数据库(出版商)”最低求助积分说明 626959
版权声明 601314