Computational fluid dynamics and machine learning algorithms analysis of striking particle velocity magnitude, particle diameter, and impact time inside an acinar region of the human lung

计算流体力学 机械 拉格朗日粒子跟踪 粒子(生态学) 物理 表面张力 气流 粒径 化学 热力学 地质学 海洋学 物理化学
作者
Isabella Francis,Suvash C. Saha
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (10) 被引量:8
标识
DOI:10.1063/5.0106594
摘要

Complementing computational fluid dynamics (CFD) simulations with machine learning algorithms is becoming increasingly popular as the combination reduces the computational time of the CFD simulations required for classifying, predicting, or optimizing the impact of geometrical and physical variables of a specific study. The main target of drug delivery studies is indicating the optimum particle diameter for targeting particular locations in the lung to achieve a desired therapeutic effect. In addition, the main goal of molecular dynamics studies is to investigate particle–lung interaction through given particle properties. Therefore, this study combines the two by numerically determining the optimum particle diameter required to obtain an ideal striking velocity magnitude (velocity at the time of striking the alveoli, i.e., deposition by sedimentation/diffusion) and impact time (time from release until deposition) inside an acinar part of the lung. At first, the striking velocity magnitudes and time for impact (two independent properties) of three different particle diameters (0.5, 1.5, and 5 μm) are computed using CFD simulations. Then, machine learning classifiers determine the particle diameter corresponding to these two independent properties. In this study, two cases are compared: A healthy acinus where a surfactant layer covers the inner surface of the alveoli providing low air–liquid surface tension values (10 mN/m), and a diseased acinus where only a water layer covers the surface causing high surface tension values (70 mN/m). In this study, the airflow velocity throughout the breathing cycle corresponds to a person with a respiratory rate of 13 breaths per minute and a volume flow rate of 6 l/min. Accurate machine learning results showed that all three particle diameters attain larger velocities and smaller impact times in a diseased acinus compared to a healthy one. In both cases, the 0.5-μm particles acquire the smallest velocities and longest impact times, while the 1.5-μm particles possess the largest velocities and shortest impact times.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
刚刚
KYT完成签到 ,获得积分10
1秒前
3秒前
3秒前
满满发布了新的文献求助10
3秒前
鳗鱼苠完成签到,获得积分10
3秒前
文艺芙完成签到,获得积分20
3秒前
鱼前发布了新的文献求助10
3秒前
4秒前
易玉燕完成签到,获得积分10
4秒前
JamesPei应助向言之采纳,获得10
4秒前
大模型应助风中钥匙采纳,获得10
4秒前
葛博完成签到,获得积分20
5秒前
wangnn发布了新的文献求助10
7秒前
满意的不二关注了科研通微信公众号
7秒前
7秒前
贝塔发布了新的文献求助10
7秒前
英姑应助失眠的可乐采纳,获得30
8秒前
小马发布了新的文献求助10
9秒前
方远锋发布了新的文献求助10
10秒前
10秒前
10秒前
拌豆腐发布了新的文献求助10
10秒前
10秒前
短腿小柯基完成签到 ,获得积分10
11秒前
11秒前
hjg完成签到,获得积分10
12秒前
酷酷问夏完成签到 ,获得积分10
12秒前
13秒前
13秒前
14秒前
eee完成签到,获得积分10
14秒前
何1发布了新的文献求助10
15秒前
淡定枕头完成签到,获得积分10
15秒前
Johnny发布了新的文献求助10
15秒前
JamesPei应助懒顾采纳,获得10
16秒前
16秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
徐淮辽南地区新元古代叠层石及生物地层 500
Coking simulation aids on-stream time 450
康复物理因子治疗 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4016913
求助须知:如何正确求助?哪些是违规求助? 3557067
关于积分的说明 11323667
捐赠科研通 3289813
什么是DOI,文献DOI怎么找? 1812563
邀请新用户注册赠送积分活动 888139
科研通“疑难数据库(出版商)”最低求助积分说明 812136