Leveraging High-Resolution Long-Wave Infrared Hyperspectral Laboratory Imaging Data for Mineral Identification Using Machine Learning Methods

人工智能 高光谱成像 计算机科学 随机森林 阿达布思 模式识别(心理学) 决策树 支持向量机 端元 集成学习 机器学习 Boosting(机器学习) 极限学习机 遥感 地质学 人工神经网络
作者
Alireza Hamedianfar,Kati Laakso,Maarit Middleton,T. Törmänen,Juha Köykkä,Johanna Torppa
出处
期刊:Remote Sensing [MDPI AG]
卷期号:15 (19): 4806-4806
标识
DOI:10.3390/rs15194806
摘要

Laboratory-based hyperspectral imaging (HSI) is an optical non-destructive technology used to extract mineralogical information from bedrock drill cores. In the present study, drill core scanning in the long-wave infrared (LWIR; 8000–12,000 nm) wavelength region was used to map the dominant minerals in HSI pixels. Machine learning classification algorithms, including random forest (RF) and support vector machine, have previously been applied to the mineral characterization of drill core hyperspectral data. The objectives of this study are to expand semi-automated mineral mapping by investigating the mapping accuracy, generalization potential, and classification ability of cutting-edge methods, such as various ensemble machine learning algorithms and deep learning semantic segmentation. In the present study, the mapping of quartz, talc, chlorite, and mixtures thereof in HSI data was performed using the ENVINet5 algorithm, which is based on the U-net deep learning network and four decision tree ensemble algorithms, including RF, gradient-boosting decision tree (GBDT), light gradient-boosting machine (LightGBM), AdaBoost, and bagging. Prior to training the classification models, endmember selection was employed using the Sequential Maximum Angle Convex Cone endmember extraction method to prepare the samples used in the model training and evaluation of the classification results. The results show that the GBDT and LightGBM classifiers outperformed the other classification models with overall accuracies of 89.43% and 89.22%, respectively. The results of the other classifiers showed overall accuracies of 87.32%, 87.33%, 82.74%, and 78.32% for RF, bagging, ENVINet5, and AdaBoost, respectively. Therefore, the findings of this study confirm that the ensemble machine learning algorithms are efficient tools to analyze drill core HSI data and map dominant minerals. Moreover, the implementation of deep learning methods for mineral mapping from HSI drill core data should be further explored and adjusted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
lookspace发布了新的文献求助10
1秒前
咕噜快逃完成签到,获得积分10
1秒前
winter888完成签到,获得积分10
2秒前
小宋完成签到,获得积分10
2秒前
3秒前
YiYi发布了新的文献求助10
4秒前
511完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
tzzzz完成签到,获得积分10
6秒前
YBH完成签到,获得积分10
6秒前
Ashley完成签到,获得积分10
6秒前
6秒前
chunchun发布了新的文献求助10
6秒前
共享精神应助winter888采纳,获得10
7秒前
evvj完成签到,获得积分10
7秒前
一个人战争完成签到,获得积分10
7秒前
彭于晏应助尉迟冰蓝采纳,获得10
9秒前
帅哥吴克发布了新的文献求助10
9秒前
许三多完成签到,获得积分10
10秒前
10秒前
nanxi88发布了新的文献求助10
10秒前
SciGPT应助沈客卿采纳,获得30
10秒前
liurenmm发布了新的文献求助10
11秒前
852应助tzzzz采纳,获得10
11秒前
11秒前
哈哈哈完成签到,获得积分10
11秒前
Ashley发布了新的文献求助10
11秒前
chunchun完成签到,获得积分10
11秒前
11秒前
12秒前
纪不愁发布了新的文献求助20
12秒前
lalala应助无限的数据线采纳,获得10
13秒前
13秒前
小蘑菇应助nn采纳,获得10
13秒前
小鳄鱼一只完成签到,获得积分10
14秒前
ldgsd完成签到,获得积分10
14秒前
日月发布了新的文献求助10
14秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650