人工智能
深度学习
计算机科学
心房颤动
一般化
心房扑动
机器学习
数学
医学
内科学
数学分析
作者
Noam Ben‐Moshe,Kenta Tsutsui,Shany Biton,Eran Zvuloni,Leif Sörnmo,Joachim A. Behar
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3404877
摘要
Introduction : Deep learning models for detecting episodes of atrial fibrillation (AF) using rhythm information in long-term ambulatory ECG recordings have shown high performance. However, the rhythm-based approach does not take advantage of the morphological information conveyed by the different ECG waveforms, particularly the f-waves. As a result, the performance of such models may be inherently limited. Methods : To address this limitation, we have developed a deep learning model, named RawECGNet, to detect episodes of AF and atrial flutter (AFl) using the raw, single-lead ECG. We compare the generalization performance of RawECGNet on two external data sets that account for distribution shifts in geography, ethnicity, and lead position. RawECGNet is further benchmarked against a state-of-the-art deep learning model, named ArNet2, which utilizes rhythm information as input. Results : Using RawECGNet, the results for the different leads in the external test sets in terms of the F1 score were 0.91–0.94 in RBDB and 0.93 in SHDB, compared to 0.89–0.91 in RBDB and 0.91 in SHDB for ArNet2. The results highlight RawECGNet as a high-performance, generalizable algorithm for detection of AF and AFl episodes, exploiting information on both rhythm and morphology.
科研通智能强力驱动
Strongly Powered by AbleSci AI