Wheat Powdery Mildew Automatic Identification Through YOLOv8 Instance Segmentation

白粉病 青梅 计算机科学 鉴定(生物学) 农业工程 人工智能 工程类 农学 生物 植物抗病性 生态学 生物化学 基因
作者
Jatin Sharma,Deepak Kumar,Saumitra Chattopadhay,Vinay Kukreja,Aditya Verma
标识
DOI:10.1109/icrito61523.2024.10522249
摘要

The global production of wheat is seriously endangered by wheat powdery mildew, which can be brought on by Blumeria graminis f. sp. tritici (Bgt). The illness produces large annual losses and threatens food security. The labourintensive and time-consuming characteristics of conventional detection methods emphasizes the need for elegant, automated surveillance systems. Deep learning techniques, particularly the YOLOv8 instance segmentation model, were employed in this study to enhance wheat powdery mildew detection and classification. Results indicate the YOLOv8 model is efficient; it can recognize wheat leaves affected by powdery mildew with a precision of 99.37%, recall of 96%, and an F1-score of 97.67%. This approach works superior to before methods, making it a promising solution for early detection of illnesses in wheat crops. In addition, the research's next steps are examined, highlighting the potential of improving the YOLOv8 model in an array of environmental situations and disease stages. Effective disease detection could be enhanced by merging new data sources as drone-based monitoring systems and hyperspectral imaging. Developing and setting up autonomous disease tracking systems in real agricultural settings involves collaboration among data scientists, technologists, and agronomic teams, in addition to user-friendly interfaces tailored to farmer needs. When everything is taken into account, this study promotes the development of successful tools to control diseases, promoting sustainable crop production and assuring food safety around the globe.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
魔山西红柿完成签到,获得积分10
1秒前
oldblack完成签到,获得积分10
2秒前
一行白鹭上青天完成签到,获得积分10
2秒前
研友_VZG7GZ应助bbdan采纳,获得10
2秒前
幽默尔蓝发布了新的文献求助10
3秒前
ycsysfd完成签到,获得积分10
3秒前
章鱼大丸子完成签到,获得积分10
3秒前
呆呆完成签到 ,获得积分10
4秒前
怡然雁凡发布了新的文献求助10
4秒前
科研通AI2S应助xxxx采纳,获得10
4秒前
南风应助科研通管家采纳,获得10
5秒前
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
犹豫觅露应助科研通管家采纳,获得10
5秒前
HEIKU应助科研通管家采纳,获得10
5秒前
王sir完成签到,获得积分10
5秒前
在水一方应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
Lucas应助科研通管家采纳,获得10
5秒前
NexusExplorer应助科研通管家采纳,获得10
5秒前
5秒前
bkagyin应助科研通管家采纳,获得10
5秒前
犹豫觅露应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
科研通AI2S应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
南风应助科研通管家采纳,获得10
6秒前
HEIKU应助科研通管家采纳,获得10
6秒前
JAK完成签到,获得积分10
6秒前
fff完成签到,获得积分10
6秒前
所愿所得应助hk1900采纳,获得10
6秒前
小马哥爱学习完成签到,获得积分10
7秒前
静静的旋律完成签到 ,获得积分20
9秒前
shuangma完成签到,获得积分10
9秒前
迷路初翠完成签到,获得积分10
9秒前
医学生完成签到,获得积分10
9秒前
材料若饥完成签到,获得积分10
10秒前
11秒前
11秒前
Elaine发布了新的文献求助10
11秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1000
Les Mantodea de Guyane 800
More activities for teaching positive psychology: A guide for instructors 700
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3402493
求助须知:如何正确求助?哪些是违规求助? 3009388
关于积分的说明 8836468
捐赠科研通 2696317
什么是DOI,文献DOI怎么找? 1477818
科研通“疑难数据库(出版商)”最低求助积分说明 683247
邀请新用户注册赠送积分活动 676965