亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Item Classification by Difficulty Using Functional Principal Component Clustering and Neural Networks

主成分分析 相似性(几何) 聚类分析 人工智能 人工神经网络 模式识别(心理学) 计算机科学 航程(航空) 机器学习 数据挖掘 图像(数学) 材料科学 复合材料
作者
James Zoucha,Igor Himelfarb,Nai-En Tang
出处
期刊:Educational and Psychological Measurement [SAGE]
标识
DOI:10.1177/00131644241299834
摘要

Maintaining consistent item difficulty across test forms is crucial for accurately and fairly classifying examinees into pass or fail categories. This article presents a practical procedure for classifying items based on difficulty levels using functional data analysis (FDA). Methodologically, we clustered item characteristic curves (ICCs) into difficulty groups by analyzing their functional principal components (FPCs) and then employed a neural network to predict difficulty for ICCs. Given the degree of similarity between many ICCs, categorizing items by difficulty can be challenging. The strength of this method lies in its ability to provide an empirical and consistent process for item classification, as opposed to relying solely on visual inspection. The findings reveal that most discrepancies between visual classification and FDA results differed by only one adjacent difficulty level. Approximately 67% of these discrepancies involved items in the medium to hard range being categorized into higher difficulty levels by FDA, while the remaining third involved very easy to easy items being classified into lower levels. The neural network, trained on these data, achieved an accuracy of 79.6%, with misclassifications also differing by only one adjacent difficulty level compared to FDA clustering. The method demonstrates an efficient and practical procedure for classifying test items, especially beneficial in testing programs where smaller volumes of examinees tested at various times throughout the year.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liu发布了新的文献求助10
刚刚
黄花菜完成签到 ,获得积分0
15秒前
XIE完成签到,获得积分10
22秒前
27秒前
orixero应助wanghaiyang采纳,获得10
32秒前
yuaner发布了新的文献求助10
33秒前
yuaner完成签到,获得积分10
36秒前
48秒前
49秒前
wanghaiyang发布了新的文献求助10
54秒前
科研通AI2S应助科研通管家采纳,获得10
56秒前
Saven完成签到,获得积分10
1分钟前
肥皂完成签到,获得积分10
1分钟前
琛哥物理完成签到,获得积分10
1分钟前
1分钟前
暖暖发布了新的文献求助10
1分钟前
时尚的梦曼完成签到,获得积分10
1分钟前
hty完成签到 ,获得积分10
2分钟前
在水一方应助暖暖采纳,获得10
2分钟前
xuetianshilily完成签到,获得积分10
2分钟前
yema完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
liqiqi发布了新的文献求助10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
我是老大应助dll采纳,获得10
3分钟前
完美世界应助小满采纳,获得10
3分钟前
3分钟前
dll发布了新的文献求助10
3分钟前
3分钟前
一味地丶逞强完成签到,获得积分10
3分钟前
小满发布了新的文献求助10
3分钟前
3分钟前
liqiqi完成签到,获得积分10
4分钟前
wanci应助dll采纳,获得10
4分钟前
善学以致用应助liqiqi采纳,获得10
4分钟前
隐形傲霜完成签到 ,获得积分10
4分钟前
lizigongzhu应助阿巴阿巴采纳,获得10
4分钟前
高分求助中
Востребованный временем 2500
诺贝尔奖与生命科学 1000
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 1000
Kidney Transplantation: Principles and Practice 1000
Separation and Purification of Oligochitosan Based on Precipitation with Bis(2-ethylhexyl) Phosphate Anion, Re-Dissolution, and Re-Precipitation as the Hydrochloride Salt 500
effects of intravenous lidocaine on postoperative pain and gastrointestinal function recovery following gastrointestinal surgery: a meta-analysis 400
The Collected Works of Jeremy Bentham: Rights, Representation, and Reform: Nonsense upon Stilts and Other Writings on the French Revolution 320
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3379091
求助须知:如何正确求助?哪些是违规求助? 2994571
关于积分的说明 8759795
捐赠科研通 2679155
什么是DOI,文献DOI怎么找? 1467494
科研通“疑难数据库(出版商)”最低求助积分说明 678702
邀请新用户注册赠送积分活动 670381