CLIP-Guided Federated Learning on Heterogeneity and Long-Tailed Data

计算机科学 数据科学
作者
Jiangming Shi,Shanshan Zheng,Xiangbo Yin,Lu Yang,Yuan Xie,Yanyun Qu
出处
期刊:Proceedings of the ... AAAI Conference on Artificial Intelligence [Association for the Advancement of Artificial Intelligence (AAAI)]
卷期号:38 (13): 14955-14963 被引量:7
标识
DOI:10.1609/aaai.v38i13.29416
摘要

Federated learning (FL) provides a decentralized machine learning paradigm where a server collaborates with a group of clients to learn a global model without accessing the clients' data. User heterogeneity is a significant challenge for FL, which together with the class-distribution imbalance further enhances the difficulty of FL. Great progress has been made in large vision-language models, such as Contrastive Language-Image Pre-training (CLIP), which paves a new way for image classification and object recognition. Inspired by the success of CLIP on few-shot and zero-shot learning, we use CLIP to optimize the federated learning between server and client models under its vision-language supervision. It is promising to mitigate the user heterogeneity and class-distribution balance due to the powerful cross-modality representation and rich open-vocabulary prior knowledge. In this paper, we propose the CLIP-guided FL (CLIP2FL) method on heterogeneous and long-tailed data. In CLIP2FL, the knowledge of the off-the-shelf CLIP model is transferred to the client-server models, and a bridge is built between the client and server. Specifically, for client-side learning, knowledge distillation is conducted between client models and CLIP to improve the ability of client-side feature representation. For server-side learning, in order to mitigate the heterogeneity and class-distribution imbalance, we generate federated features to retrain the server model. A prototype contrastive learning with the supervision of the text encoder of CLIP is introduced to generate federated features depending on the client-side gradients, and they are used to retrain a balanced server classifier. Extensive experimental results on several benchmarks demonstrate that CLIP2FL achieves impressive performance and effectively deals with data heterogeneity and long-tail distribution. The code is available at https://github.com/shijiangming1/CLIP2FL.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小二郎应助佛了欢喜采纳,获得10
1秒前
小马甲应助Obliviate采纳,获得10
1秒前
1秒前
1秒前
BINGBONG完成签到,获得积分10
1秒前
鲤黎黎发布了新的文献求助10
1秒前
顾矜应助史迪仔崽采纳,获得10
3秒前
3秒前
ysx发布了新的文献求助10
3秒前
从容的鹰发布了新的文献求助10
4秒前
4秒前
janine完成签到,获得积分10
4秒前
慕青应助liujing_242022采纳,获得10
5秒前
6秒前
0713完成签到,获得积分10
6秒前
6秒前
zpw123发布了新的文献求助10
6秒前
阿里巴巴完成签到 ,获得积分10
6秒前
sizzy发布了新的文献求助10
7秒前
stone完成签到,获得积分10
7秒前
Jasper应助xiangrikui采纳,获得10
8秒前
atmorz发布了新的文献求助10
8秒前
CHEN发布了新的文献求助80
8秒前
今后应助愉快彩虹采纳,获得10
8秒前
8秒前
斯文败类应助从容听白采纳,获得10
8秒前
陶醉觅夏发布了新的文献求助10
9秒前
9秒前
janine发布了新的文献求助30
10秒前
疯狂的夏天完成签到,获得积分10
11秒前
磊枝完成签到 ,获得积分10
12秒前
科研通AI5应助舒心的秋荷采纳,获得10
13秒前
可爱的函函应助小徐采纳,获得10
14秒前
14秒前
坚定的听南完成签到,获得积分10
14秒前
来瓶养乐多应助fengye采纳,获得10
15秒前
hh发布了新的文献求助10
15秒前
那些年完成签到 ,获得积分10
15秒前
喵喵大王发布了新的文献求助10
15秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Conference Record, IAS Annual Meeting 1977 1250
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
APA educational psychology handbook, Vol 1: Theories, constructs, and critical issues 700
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3652722
求助须知:如何正确求助?哪些是违规求助? 3216855
关于积分的说明 9714154
捐赠科研通 2924569
什么是DOI,文献DOI怎么找? 1601790
邀请新用户注册赠送积分活动 754553
科研通“疑难数据库(出版商)”最低求助积分说明 733156