Multi-strategy fusion differential evolution algorithm for UAV path planning in complex environment

运动规划 差异进化 人口 计算机科学 数学优化 路径(计算) 规划师 最优化问题 人工智能 算法 机器人 数学 社会学 人口学 程序设计语言
作者
Xuzhao Chai,Zhishuai Zheng,Junming Xiao,Yan Li,Boyang Qu,Pengwei Wen,Haoyu Wang,You Zhou,Hang Sun
出处
期刊:Aerospace Science and Technology [Elsevier BV]
卷期号:121: 107287-107287 被引量:69
标识
DOI:10.1016/j.ast.2021.107287
摘要

The path planning of Unmanned Aerial Vehicle (UAV) is a real-world optimization problem, and even develops into a hard optimization problem with many objectives and constraints when UAVs work in a complex environment. In a complex environment, the resulting constraints can lead to decrease the quantity of the feasible solutions, so that can bring difficulties to plan routes for UAVs. Therefore, it is necessary to design a high-quality planner for a UAV in a complex environment. In this work, we have proposed a Multi-Strategy Fusion Differential Evolution algorithm (MSFDE). The proposed algorithm integrates the multi-population strategy, the novel self-adaptive strategy and the ensemble of the interactive mutation strategy in order to balance the exploitation and exploration capabilities. The multi-population strategy is used to divide the whole population into the three indicator subpopulations and a reward subpopulation for maintaining the diversity of the whole population; the novel self-adaptive strategy is introduced to control the parameters F and CR based on the teaching-learning-based optimization method; the ensemble of the interactive mutation strategy is to exchange the information among the three indicator subpopulations on each generation for boosting the population diversity. The constraints in the UAV path planning are transformed into the objective functions by the linear weighted sum method. Scenario 1, 2, 3, and 4 are designed with different complex level, and other eight algorithms are introduced to be compared with MSFDE. The simulation results confirm that MSFDE has an outstanding performance for the UAV three-dimensional path planning in the complex environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
3秒前
3秒前
YI发布了新的文献求助10
3秒前
3秒前
王科完成签到,获得积分10
4秒前
FashionBoy应助luo采纳,获得10
4秒前
1184发布了新的文献求助10
5秒前
5秒前
6秒前
九九发布了新的文献求助10
6秒前
7秒前
周助发布了新的文献求助10
7秒前
柿柿发布了新的文献求助10
8秒前
yang发布了新的文献求助10
9秒前
CC发布了新的文献求助10
9秒前
nv完成签到,获得积分10
10秒前
科研通AI2S应助邱丽膏采纳,获得10
11秒前
11秒前
小马甲应助方不居采纳,获得10
11秒前
柿柿完成签到,获得积分10
13秒前
13秒前
科研通AI5应助笑面客采纳,获得10
14秒前
迷你的颖发布了新的文献求助10
16秒前
17秒前
万能图书馆应助自然卷卷采纳,获得10
19秒前
霜沐完成签到,获得积分10
20秒前
乐观的白羊完成签到,获得积分10
21秒前
21秒前
carl发布了新的文献求助10
22秒前
22秒前
22秒前
wanwan完成签到,获得积分10
23秒前
23秒前
maprang发布了新的文献求助10
24秒前
元气少女岳云鹏完成签到,获得积分10
25秒前
26秒前
善学以致用应助裴钰采纳,获得10
26秒前
852应助mukji采纳,获得10
26秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1000
CRC Handbook of Chemistry and Physics 104th edition 1000
Izeltabart tapatansine - AdisInsight 600
Maneuvering of a Damaged Navy Combatant 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3769778
求助须知:如何正确求助?哪些是违规求助? 3314816
关于积分的说明 10173854
捐赠科研通 3030138
什么是DOI,文献DOI怎么找? 1662650
邀请新用户注册赠送积分活动 795062
科研通“疑难数据库(出版商)”最低求助积分说明 756519