作者
Lu Qi,Yongze Liu,Benhang Li,Li Feng,Ziwen Du,Liqiu Zhang
摘要
As an important component of dissolved organic matter (DOM), dissolved black carbon (DBC) which is characterized of abundant aromatic and oxygen-containing functional groups, is widely distributed in aquatic environments. Its presence may hinder the oxidation of organic micro-pollutants during advanced oxidation processes (AOPs) via free radicals scavenging effect. However, the second-order reaction rate constants of DBC with different free radicals including hydroxyl radical (OH•), sulfate radical (SO4•-), reactive chlorine radicals (RCR) are unknown and the relationship between the chemical composition of DBC and the second-order reaction rate constants during different AOPs (UV/H2O2, UV/PDS, UV/Chlorine) is also unclear. In this study, a plant-derived DBC was extracted from wheat biochar and fractionated according to molecular weight (i.e., <10 k, <3 k, and < 1 k Da). The second order rate constants of DBC reaction with different free radicals were determined by competitive kinetic method. Besides, the chemical composition of DBC was revealed by ultraviolet-visible (UV-Vis) spectroscopy, fluorescence excitation-emission-matrix (EEM) spectroscopy Fourier Transform Infrared (FTIR), X-ray photoelectron spectroscopy (XPS), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) combined with statistical analysis. The results showed that the second-order rate constants decreased as the molecular weight increased. For the <1 k Da DBC, the kDBC-OH•, kDBC-SO4•--, kDBC-RCR were (1.83 ± 0.06) × 104, (7.60 ± 0.21) × 103, and (1.71 ± 0.13) × 104 L·mgC-1·s-1, which were 1.98, 2.19, 1.43 times of that for the <10 k Da fraction and 1.38, 1.36, 1.24 times of that for the <3 k Da fraction in UV/H2O2, UV/PDS and UV/Chlorine processes. In addition, the results of chemical composition analysis showed that DBC mainly contained humic substances and was rich in O-containing functional groups such as CO. The second order reaction rate constants of DBC with different free radicals decreased with increasing the molecular weight of DBC due to the more aggregated structure of the small molecules that the inner carbon of DBC was not easily exposed to free radicals.