Learn, Imagine and Create: Text-to-Image Generation from Prior Knowledge

先验概率 计算机科学 人工智能 杠杆(统计) 图像(数学) 嵌入 编码器 机器学习 自然语言处理 贝叶斯概率 操作系统
作者
Tingting Qiao,Jing Zhang,Duanqing Xu,Dacheng Tao
出处
期刊:Neural Information Processing Systems 卷期号:32: 885-895 被引量:67
链接
摘要

Text-to-image generation, i.e. generating an image given a text description, is a very challenging task due to the significant semantic gap between the two domains. Humans, however, tackle this problem intelligently. We learn from diverse objects to form a solid prior about semantics, textures, colors, shapes, and layouts. Given a text description, we immediately imagine an overall visual impression using this prior and, based on this, we draw a picture by progressively adding more and more details. In this paper, and inspired by this process, we propose a novel text-to-image method called LeicaGAN to combine the above three phases in a unified framework. First, we formulate the multiple priors learning phase as a textual-visual co-embedding (TVE) comprising a text-image encoder for learning semantic, texture, and color priors and a text-mask encoder for learning shape and layout priors. Then, we formulate the imagination phase as multiple priors aggregation (MPA) by combining these complementary priors and adding noise for diversity. Lastly, we formulate the creation phase by using a cascaded attentive generator (CAG) to progressively draw a picture from coarse to fine. We leverage adversarial learning for LeicaGAN to enforce semantic consistency and visual realism. Thorough experiments on two public benchmark datasets demonstrate LeicaGAN's superiority over the baseline method. Code has been made available at https://github.com/qiaott/LeicaGAN.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
听蝉发布了新的文献求助10
1秒前
传奇3应助好好采纳,获得10
1秒前
yamo发布了新的文献求助10
1秒前
啵赞的龟丝儿完成签到,获得积分10
1秒前
大吴克发布了新的文献求助10
2秒前
2秒前
2秒前
甄冰海完成签到,获得积分10
3秒前
3秒前
多元醇完成签到,获得积分20
3秒前
4秒前
wanci应助cuizhiyu采纳,获得10
4秒前
陌上疏完成签到,获得积分10
4秒前
4秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
An慧完成签到,获得积分10
5秒前
赘婿应助makabaka采纳,获得10
5秒前
Owen应助ZMmmm采纳,获得10
6秒前
11完成签到,获得积分10
6秒前
GAOBIN000发布了新的文献求助10
7秒前
网安小趴菜完成签到,获得积分10
7秒前
勒布朗发布了新的文献求助10
7秒前
斯文败类应助菜菜果冻采纳,获得10
7秒前
dsf完成签到,获得积分10
8秒前
九月秋完成签到,获得积分10
8秒前
laber应助Thunnus001采纳,获得50
8秒前
李健应助大胆香彤采纳,获得10
8秒前
XiaojieLiu发布了新的文献求助10
9秒前
好好完成签到,获得积分10
9秒前
李桢发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
11秒前
11秒前
思源应助自觉南风采纳,获得10
11秒前
11秒前
秀丽高跟鞋完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
岡本唐貴自伝的回想画集 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3663580
求助须知:如何正确求助?哪些是违规求助? 3224069
关于积分的说明 9754981
捐赠科研通 2933971
什么是DOI,文献DOI怎么找? 1606503
邀请新用户注册赠送积分活动 758539
科研通“疑难数据库(出版商)”最低求助积分说明 734891