Quality Disclosure Strategy under Customer Learning Opportunities

质量(理念) 采购 灵活性(工程) 人气 业务 营销 产品(数学) 经济 几何学 心理学 数学 社会心理学 认识论 哲学 管理
作者
Zhu Han,Yimin Yu,Saibal Ray
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (4): 1136-1153 被引量:19
标识
DOI:10.1111/poms.13295
摘要

For experience goods (products or services), given the uncertainty about their actual quality and the growing popularity of social media, potential customers nowadays depend on experiences of peers who have used the goods previously to learn about their quality. In this paper, we study how such customer learning affects a firm's (credible) quality disclosure strategy as well as other relevant decisions. To model such learning, we adopt the anecdotal reasoning framework, which we show to be rational and a special case of the Bayesian framework. There are two main insights that we glean from this study. First, we find that the incorporation of the learning behavior significantly alters the optimal disclosure strategy from its single threshold structure in the extant literature to a multi‐threshold policy. Specifically, firms with high‐ or low‐quality goods prefer not disclosing quality information in order to utilize the pricing flexibility that such a strategy affords; on the other hand, a medium‐quality firm might disclose its quality level, even though this hinders its pricing flexibility, so that customers are confident about it when purchasing the product. Second, we show that the change in the disclosure strategy impacts the optimal pricing decision, which can be non‐monotone in the quality level. Our results suggest that when disclosure is expensive, high‐quality firms are better off educating potential customers through advertising or social media, rather than disclosing their quality levels. They also suggest to policymakers that mandatory quality disclosure may not be socially optimal as more customers obtain quality information through peer learning. Our findings are robust and hold true under quite general customer valuation distributions, in capacitated settings and even when price can be used as a signal of quality level by firms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LMFY222发布了新的文献求助10
1秒前
天天快乐发布了新的文献求助10
1秒前
www发布了新的文献求助10
1秒前
fhdgwmyx完成签到,获得积分10
2秒前
11完成签到 ,获得积分20
2秒前
2秒前
情怀应助自然有手就行采纳,获得10
3秒前
Lanmeiwei发布了新的文献求助10
4秒前
今后应助负责的小蘑菇采纳,获得10
5秒前
5秒前
6秒前
7秒前
田田田发布了新的文献求助10
7秒前
8秒前
tommy发布了新的文献求助10
8秒前
顾矜应助念你惊鸿影采纳,获得10
8秒前
Hyy完成签到,获得积分10
9秒前
星辰大海应助岳先生采纳,获得10
9秒前
上官若男应助YQS采纳,获得10
9秒前
温柔梦松完成签到 ,获得积分10
10秒前
10秒前
123完成签到,获得积分10
10秒前
天天快乐完成签到,获得积分10
10秒前
10秒前
紫葡萄发布了新的文献求助10
10秒前
hjjj完成签到,获得积分10
11秒前
123发布了新的文献求助10
11秒前
冬雪发布了新的文献求助10
12秒前
爱笑花卷完成签到 ,获得积分10
12秒前
开心妍完成签到 ,获得积分10
12秒前
帆希完成签到,获得积分10
12秒前
DDL完成签到,获得积分10
12秒前
脑洞疼应助豆子采纳,获得10
13秒前
小白完成签到,获得积分10
13秒前
Hyy发布了新的文献求助10
13秒前
甜甜玫瑰应助跳跃梦岚采纳,获得30
14秒前
科研通AI2S应助chosmos采纳,获得10
15秒前
二呆熊完成签到,获得积分10
15秒前
慕青应助raffia采纳,获得30
15秒前
tommy完成签到,获得积分10
16秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870