Quality Disclosure Strategy under Customer Learning Opportunities

质量(理念) 采购 灵活性(工程) 人气 业务 营销 产品(数学) 经济 几何学 心理学 数学 社会心理学 认识论 哲学 管理
作者
Zhu Han,Yimin Yu,Saibal Ray
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (4): 1136-1153 被引量:24
标识
DOI:10.1111/poms.13295
摘要

For experience goods (products or services), given the uncertainty about their actual quality and the growing popularity of social media, potential customers nowadays depend on experiences of peers who have used the goods previously to learn about their quality. In this paper, we study how such customer learning affects a firm's (credible) quality disclosure strategy as well as other relevant decisions. To model such learning, we adopt the anecdotal reasoning framework, which we show to be rational and a special case of the Bayesian framework. There are two main insights that we glean from this study. First, we find that the incorporation of the learning behavior significantly alters the optimal disclosure strategy from its single threshold structure in the extant literature to a multi‐threshold policy. Specifically, firms with high‐ or low‐quality goods prefer not disclosing quality information in order to utilize the pricing flexibility that such a strategy affords; on the other hand, a medium‐quality firm might disclose its quality level, even though this hinders its pricing flexibility, so that customers are confident about it when purchasing the product. Second, we show that the change in the disclosure strategy impacts the optimal pricing decision, which can be non‐monotone in the quality level. Our results suggest that when disclosure is expensive, high‐quality firms are better off educating potential customers through advertising or social media, rather than disclosing their quality levels. They also suggest to policymakers that mandatory quality disclosure may not be socially optimal as more customers obtain quality information through peer learning. Our findings are robust and hold true under quite general customer valuation distributions, in capacitated settings and even when price can be used as a signal of quality level by firms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
敏敏发布了新的文献求助10
2秒前
木木完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
3秒前
JamesPei应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
如意2023完成签到 ,获得积分10
4秒前
fomo完成签到,获得积分10
8秒前
nagi发布了新的文献求助10
11秒前
jfeng完成签到,获得积分10
13秒前
JN完成签到,获得积分10
21秒前
忐忑的书桃完成签到 ,获得积分10
22秒前
qaplay完成签到 ,获得积分0
22秒前
友好语风完成签到,获得积分10
23秒前
CLTTTt完成签到,获得积分10
24秒前
yk完成签到,获得积分10
26秒前
甜美的初蓝完成签到 ,获得积分10
30秒前
早安完成签到 ,获得积分10
34秒前
初昀杭完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
40秒前
LIU完成签到 ,获得积分10
40秒前
42秒前
nianshu完成签到 ,获得积分0
43秒前
starwan完成签到 ,获得积分10
44秒前
松松发布了新的文献求助20
44秒前
hooddy123459发布了新的文献求助10
45秒前
wenhuanwenxian完成签到 ,获得积分10
49秒前
happy完成签到 ,获得积分10
53秒前
拾壹完成签到,获得积分10
1分钟前
雪花完成签到,获得积分10
1分钟前
清风完成签到 ,获得积分10
1分钟前
雪花发布了新的文献求助10
1分钟前
秀丽笑容完成签到 ,获得积分10
1分钟前
江湖应助聪慧芷巧采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Rjy完成签到 ,获得积分10
1分钟前
性感母蟑螂完成签到 ,获得积分10
1分钟前
ruochenzu完成签到,获得积分10
1分钟前
陈尹蓝完成签到 ,获得积分10
1分钟前
天道酬勤完成签到,获得积分10
1分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038066
求助须知:如何正确求助?哪些是违规求助? 3575779
关于积分的说明 11373801
捐赠科研通 3305584
什么是DOI,文献DOI怎么找? 1819239
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022