Quality Disclosure Strategy under Customer Learning Opportunities

质量(理念) 采购 灵活性(工程) 人气 业务 营销 产品(数学) 经济 数学 管理 认识论 心理学 社会心理学 哲学 几何学
作者
Zhu Han,Yimin Yu,Saibal Ray
出处
期刊:Production and Operations Management [Wiley]
卷期号:30 (4): 1136-1153 被引量:32
标识
DOI:10.1111/poms.13295
摘要

For experience goods (products or services), given the uncertainty about their actual quality and the growing popularity of social media, potential customers nowadays depend on experiences of peers who have used the goods previously to learn about their quality. In this paper, we study how such customer learning affects a firm's (credible) quality disclosure strategy as well as other relevant decisions. To model such learning, we adopt the anecdotal reasoning framework, which we show to be rational and a special case of the Bayesian framework. There are two main insights that we glean from this study. First, we find that the incorporation of the learning behavior significantly alters the optimal disclosure strategy from its single threshold structure in the extant literature to a multi‐threshold policy. Specifically, firms with high‐ or low‐quality goods prefer not disclosing quality information in order to utilize the pricing flexibility that such a strategy affords; on the other hand, a medium‐quality firm might disclose its quality level, even though this hinders its pricing flexibility, so that customers are confident about it when purchasing the product. Second, we show that the change in the disclosure strategy impacts the optimal pricing decision, which can be non‐monotone in the quality level. Our results suggest that when disclosure is expensive, high‐quality firms are better off educating potential customers through advertising or social media, rather than disclosing their quality levels. They also suggest to policymakers that mandatory quality disclosure may not be socially optimal as more customers obtain quality information through peer learning. Our findings are robust and hold true under quite general customer valuation distributions, in capacitated settings and even when price can be used as a signal of quality level by firms.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
搜集达人应助曾经的代曼采纳,获得10
刚刚
刚刚
一只宝贝烊完成签到,获得积分20
1秒前
王明月发布了新的文献求助10
1秒前
renwoxing完成签到,获得积分10
1秒前
烟花应助winkkk采纳,获得30
2秒前
甜甜诗筠发布了新的文献求助10
2秒前
之_ZH完成签到 ,获得积分10
2秒前
rjhgh发布了新的文献求助20
2秒前
Deserts发布了新的文献求助10
2秒前
xyzhang发布了新的文献求助10
2秒前
luckzz完成签到,获得积分10
3秒前
陈敏娇发布了新的文献求助10
3秒前
zj完成签到,获得积分10
4秒前
Roy发布了新的文献求助10
4秒前
4秒前
4秒前
今北完成签到,获得积分10
4秒前
NexusExplorer应助正直惜文采纳,获得10
5秒前
Yue完成签到,获得积分20
5秒前
李海平发布了新的文献求助10
5秒前
嘻嘻发布了新的文献求助10
6秒前
Criminology34应助陶逸豪采纳,获得10
7秒前
7秒前
光亮向真完成签到,获得积分10
7秒前
如意的导师应助molec采纳,获得10
7秒前
桃之夭夭完成签到,获得积分10
7秒前
隐形曼青应助sam采纳,获得30
7秒前
领导范儿应助崔铭哲采纳,获得10
7秒前
李爱国应助星辰0817采纳,获得10
7秒前
烟熏柿子发布了新的文献求助10
7秒前
7秒前
8秒前
9秒前
大将军完成签到,获得积分10
9秒前
打打应助小曹硕士采纳,获得10
10秒前
10秒前
11秒前
12秒前
狂奔的蜗牛完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
A Half Century of the Sonogashira Reaction 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 600
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5167192
求助须知:如何正确求助?哪些是违规求助? 4359127
关于积分的说明 13572359
捐赠科研通 4205589
什么是DOI,文献DOI怎么找? 2306477
邀请新用户注册赠送积分活动 1306190
关于科研通互助平台的介绍 1252700