Hyperspectral Image Classification via Discriminant Gabor Ensemble Filter

判别式 人工智能 模式识别(心理学) 卷积神经网络 计算机科学 Gabor滤波器 高光谱成像 滤波器(信号处理) 线性判别分析 判别式 小波 深度学习 计算机视觉 特征提取 小波 离散小波变换 小波变换
作者
Ke-Kun Huang,Chuan-Xian Ren,Hui Liu,Zhao‐Rong Lai,Yu‐Feng Yu,Dao‐Qing Dai
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (8): 8352-8365 被引量:30
标识
DOI:10.1109/tcyb.2021.3051141
摘要

For a broad range of applications, hyperspectral image (HSI) classification is a hot topic in remote sensing, and convolutional neural network (CNN)-based methods are drawing increasing attention. However, to train millions of parameters in CNN requires a large number of labeled training samples, which are difficult to collect. A conventional Gabor filter can effectively extract spatial information with different scales and orientations without training, but it may be missing some important discriminative information. In this article, we propose the Gabor ensemble filter (GEF), a new convolutional filter to extract deep features for HSI with fewer trainable parameters. GEF filters each input channel by some fixed Gabor filters and learnable filters simultaneously, then reduces the dimensions by some learnable 1×1 filters to generate the output channels. The fixed Gabor filters can extract common features with different scales and orientations, while the learnable filters can learn some complementary features that Gabor filters cannot extract. Based on GEF, we design a network architecture for HSI classification, which extracts deep features and can learn from limited training samples. In order to simultaneously learn more discriminative features and an end-to-end system, we propose to introduce the local discriminant structure for cross-entropy loss by combining the triplet hard loss. Results of experiments on three HSI datasets show that the proposed method has significantly higher classification accuracy than other state-of-the-art methods. Moreover, the proposed method is speedy for both training and testing.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LamChem发布了新的文献求助10
刚刚
热心的梦柏完成签到 ,获得积分10
刚刚
1秒前
2秒前
平文发布了新的文献求助10
2秒前
awoe完成签到,获得积分10
2秒前
顾矜应助愉快的太阳采纳,获得10
2秒前
tt发布了新的文献求助10
3秒前
3秒前
4秒前
小红象发布了新的文献求助10
5秒前
ing发布了新的文献求助10
5秒前
chenchen发布了新的文献求助10
6秒前
JamesPei应助jsyinkai采纳,获得10
6秒前
张静煊发布了新的文献求助10
7秒前
7秒前
LamChem完成签到,获得积分20
7秒前
8秒前
Think完成签到,获得积分10
8秒前
8秒前
wuwuw发布了新的文献求助10
9秒前
平文完成签到,获得积分10
9秒前
10秒前
11秒前
所所应助chenchen采纳,获得10
11秒前
斌斌发布了新的文献求助10
11秒前
Akim应助谦让的秀采纳,获得10
11秒前
稳重的雁兰完成签到,获得积分20
11秒前
hxxxxx完成签到,获得积分10
12秒前
桐桐应助喜悦的含雁采纳,获得10
12秒前
12秒前
13秒前
TOW发布了新的文献求助10
13秒前
13秒前
14秒前
dl发布了新的文献求助10
16秒前
李健的粉丝团团长应助WHY采纳,获得10
16秒前
JamesPei应助wuwuw采纳,获得10
16秒前
16秒前
pxx发布了新的文献求助10
17秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Munson, Young, and Okiishi’s Fundamentals of Fluid Mechanics 9 edition problem solution manual (metric) 800
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3748491
求助须知:如何正确求助?哪些是违规求助? 3291508
关于积分的说明 10073402
捐赠科研通 3007382
什么是DOI,文献DOI怎么找? 1651565
邀请新用户注册赠送积分活动 786479
科研通“疑难数据库(出版商)”最低求助积分说明 751752