亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling of seizure and seizure-free EEG signals based on stochastic differential equations

脑电图 癫痫发作 随机微分方程 数学 应用数学 计算机科学 心理学 神经科学
作者
Mahnoosh Tajmirriahi,Zahra Amini
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:150: 111104-111104 被引量:20
标识
DOI:10.1016/j.chaos.2021.111104
摘要

• We proposed a novel signal modeling for EEG signals in order to detect seizure and seizure free intervals. • A major advantage of this model is that it does not require decomposing EEG signal to its spectral constructive rhythms. • Our results demonstrated promising performance of proposed model. • This model is computationally very simple and reliable and can be used in real time applications of epileptic EEG classification. • Furthermore, this type of statistical modeling can be used for various EEG segment classifications. seizures commonly occurs in epileptic patients and decrease their quality of life. Investigating past attacks and predict future seizures can be done by exact classification between healthy and seizure based segments in electroencephalograph (EEG) recordings of these patients. Modeling EEG signal can help to extract discriminative features from it. These features make automatic classification more accurate. In this paper we propose a new modeling for EEG signals based on stochastic differential equations (SDE). In this statistical modeling, EEG signals are modeled with a self-similar fractional Levy stable process due to their inherent self-similarity. These processes are considered as response of SDE to the zero mean white symmetric alpha stable noise and inversely, by applying a derivative operator on these processes this white noise could be obtained again. We use a scale invariant fractional derivative operator for this purpose. Having fitted a probability distribution to the histogram of EEG signal after derivation, parameters of fitted histogram can be applied as features for classification task. We modeled healthy and epileptic segments of EEG signal from Bonn University database, and Neurology and Sleep Centre of New Delhi database. As an application of proposed model, we used features obtained from modeled signals to train an SVM classifier. Experimental result revealed highest classification of 99.8% for Bonn University database and 99.1% for Sleep Centre of New Delhi database, between normal and epileptic EEG signals. In conclusion, the proposed model is simple (does not require any decomposition of EEG signals), accurate and computationally efficient.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒羊羊完成签到 ,获得积分10
10秒前
在水一方应助彩色凝竹采纳,获得10
11秒前
追寻的十三完成签到,获得积分10
11秒前
mm完成签到 ,获得积分10
13秒前
ranj完成签到,获得积分10
14秒前
14秒前
风清扬发布了新的文献求助10
18秒前
ttzziy完成签到 ,获得积分10
19秒前
宋锦秀完成签到,获得积分10
23秒前
23秒前
Akim应助xiao采纳,获得50
24秒前
三泥完成签到,获得积分10
26秒前
yangzai发布了新的文献求助50
27秒前
好运常在完成签到 ,获得积分10
27秒前
28秒前
33秒前
35秒前
早日毕业脱离苦海完成签到 ,获得积分10
35秒前
39秒前
风清扬发布了新的文献求助10
42秒前
白华苍松发布了新的文献求助20
44秒前
闪闪的可愁完成签到 ,获得积分10
46秒前
刘致远发布了新的文献求助10
48秒前
马宁婧完成签到 ,获得积分10
53秒前
嘿嘿应助科研通管家采纳,获得10
53秒前
嘿嘿应助科研通管家采纳,获得10
53秒前
科研通AI2S应助科研通管家采纳,获得10
54秒前
嘿嘿应助科研通管家采纳,获得10
54秒前
李爱国应助科研通管家采纳,获得10
54秒前
FashionBoy应助科研通管家采纳,获得10
54秒前
研友_VZG7GZ应助科研通管家采纳,获得10
54秒前
嘿嘿应助科研通管家采纳,获得10
54秒前
55秒前
Lucas应助拾新采纳,获得10
55秒前
善学以致用应助白华苍松采纳,获得10
56秒前
57秒前
57秒前
hdt完成签到,获得积分10
59秒前
Frankie发布了新的文献求助10
1分钟前
hdt发布了新的文献求助10
1分钟前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584578
求助须知:如何正确求助?哪些是违规求助? 4668351
关于积分的说明 14771240
捐赠科研通 4611160
什么是DOI,文献DOI怎么找? 2530000
邀请新用户注册赠送积分活动 1498932
关于科研通互助平台的介绍 1467441