清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Modeling of seizure and seizure-free EEG signals based on stochastic differential equations

脑电图 癫痫发作 随机微分方程 数学 应用数学 计算机科学 心理学 神经科学
作者
Mahnoosh Tajmirriahi,Zahra Amini
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:150: 111104-111104 被引量:20
标识
DOI:10.1016/j.chaos.2021.111104
摘要

• We proposed a novel signal modeling for EEG signals in order to detect seizure and seizure free intervals. • A major advantage of this model is that it does not require decomposing EEG signal to its spectral constructive rhythms. • Our results demonstrated promising performance of proposed model. • This model is computationally very simple and reliable and can be used in real time applications of epileptic EEG classification. • Furthermore, this type of statistical modeling can be used for various EEG segment classifications. seizures commonly occurs in epileptic patients and decrease their quality of life. Investigating past attacks and predict future seizures can be done by exact classification between healthy and seizure based segments in electroencephalograph (EEG) recordings of these patients. Modeling EEG signal can help to extract discriminative features from it. These features make automatic classification more accurate. In this paper we propose a new modeling for EEG signals based on stochastic differential equations (SDE). In this statistical modeling, EEG signals are modeled with a self-similar fractional Levy stable process due to their inherent self-similarity. These processes are considered as response of SDE to the zero mean white symmetric alpha stable noise and inversely, by applying a derivative operator on these processes this white noise could be obtained again. We use a scale invariant fractional derivative operator for this purpose. Having fitted a probability distribution to the histogram of EEG signal after derivation, parameters of fitted histogram can be applied as features for classification task. We modeled healthy and epileptic segments of EEG signal from Bonn University database, and Neurology and Sleep Centre of New Delhi database. As an application of proposed model, we used features obtained from modeled signals to train an SVM classifier. Experimental result revealed highest classification of 99.8% for Bonn University database and 99.1% for Sleep Centre of New Delhi database, between normal and epileptic EEG signals. In conclusion, the proposed model is simple (does not require any decomposition of EEG signals), accurate and computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sadh2完成签到 ,获得积分10
30秒前
leo完成签到 ,获得积分10
48秒前
Owen应助ldtbest0525采纳,获得10
1分钟前
2分钟前
chenyue233发布了新的文献求助10
2分钟前
大医仁心完成签到 ,获得积分10
2分钟前
Chen完成签到 ,获得积分10
2分钟前
南星完成签到 ,获得积分10
2分钟前
3分钟前
迷人书蝶完成签到 ,获得积分10
3分钟前
11发布了新的文献求助30
3分钟前
3分钟前
ldtbest0525发布了新的文献求助10
4分钟前
ldtbest0525完成签到,获得积分10
4分钟前
4分钟前
菠萝发布了新的文献求助10
4分钟前
小二郎应助菠萝采纳,获得10
4分钟前
灿烂而孤独的八戒完成签到 ,获得积分0
4分钟前
5分钟前
Omni发布了新的文献求助20
5分钟前
QCB完成签到 ,获得积分10
6分钟前
zsj完成签到 ,获得积分10
6分钟前
在水一方完成签到,获得积分0
7分钟前
小猪快跑完成签到 ,获得积分10
7分钟前
7分钟前
所所应助ldtbest0525采纳,获得10
8分钟前
lx关闭了lx文献求助
8分钟前
席江海完成签到,获得积分0
8分钟前
bji完成签到,获得积分10
8分钟前
GPTea举报Bo求助涉嫌违规
9分钟前
wh完成签到,获得积分10
9分钟前
Criminology34应助忐忑的甜瓜采纳,获得10
9分钟前
Qing完成签到 ,获得积分10
9分钟前
两个榴莲完成签到,获得积分0
9分钟前
10分钟前
川川完成签到 ,获得积分10
10分钟前
老迟到的友桃完成签到 ,获得积分10
10分钟前
sweetrumors完成签到,获得积分10
10分钟前
em0发布了新的文献求助30
10分钟前
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5255192
求助须知:如何正确求助?哪些是违规求助? 4417829
关于积分的说明 13751783
捐赠科研通 4290779
什么是DOI,文献DOI怎么找? 2354372
邀请新用户注册赠送积分活动 1350970
关于科研通互助平台的介绍 1311383