亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Modeling of seizure and seizure-free EEG signals based on stochastic differential equations

脑电图 癫痫发作 随机微分方程 数学 应用数学 计算机科学 心理学 神经科学
作者
Mahnoosh Tajmirriahi,Zahra Amini
出处
期刊:Chaos Solitons & Fractals [Elsevier]
卷期号:150: 111104-111104 被引量:20
标识
DOI:10.1016/j.chaos.2021.111104
摘要

• We proposed a novel signal modeling for EEG signals in order to detect seizure and seizure free intervals. • A major advantage of this model is that it does not require decomposing EEG signal to its spectral constructive rhythms. • Our results demonstrated promising performance of proposed model. • This model is computationally very simple and reliable and can be used in real time applications of epileptic EEG classification. • Furthermore, this type of statistical modeling can be used for various EEG segment classifications. seizures commonly occurs in epileptic patients and decrease their quality of life. Investigating past attacks and predict future seizures can be done by exact classification between healthy and seizure based segments in electroencephalograph (EEG) recordings of these patients. Modeling EEG signal can help to extract discriminative features from it. These features make automatic classification more accurate. In this paper we propose a new modeling for EEG signals based on stochastic differential equations (SDE). In this statistical modeling, EEG signals are modeled with a self-similar fractional Levy stable process due to their inherent self-similarity. These processes are considered as response of SDE to the zero mean white symmetric alpha stable noise and inversely, by applying a derivative operator on these processes this white noise could be obtained again. We use a scale invariant fractional derivative operator for this purpose. Having fitted a probability distribution to the histogram of EEG signal after derivation, parameters of fitted histogram can be applied as features for classification task. We modeled healthy and epileptic segments of EEG signal from Bonn University database, and Neurology and Sleep Centre of New Delhi database. As an application of proposed model, we used features obtained from modeled signals to train an SVM classifier. Experimental result revealed highest classification of 99.8% for Bonn University database and 99.1% for Sleep Centre of New Delhi database, between normal and epileptic EEG signals. In conclusion, the proposed model is simple (does not require any decomposition of EEG signals), accurate and computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
Omni完成签到,获得积分10
7秒前
远方完成签到,获得积分10
8秒前
云飞扬完成签到 ,获得积分10
8秒前
Clove完成签到 ,获得积分10
12秒前
shweah2003完成签到,获得积分10
16秒前
研友_8y2o0L发布了新的文献求助10
20秒前
24秒前
Jasper应助研友_8y2o0L采纳,获得10
24秒前
25秒前
30秒前
37秒前
sun发布了新的文献求助10
38秒前
48秒前
甜甜的以筠完成签到 ,获得积分10
50秒前
超级绫完成签到 ,获得积分10
52秒前
宇宙之王宙斯完成签到 ,获得积分10
53秒前
1分钟前
漂亮夏兰完成签到 ,获得积分10
1分钟前
一路向北发布了新的文献求助10
1分钟前
GGGrigor完成签到,获得积分10
1分钟前
umil完成签到 ,获得积分10
1分钟前
zhang08完成签到,获得积分10
1分钟前
科研通AI2S应助一路向北采纳,获得10
1分钟前
1分钟前
Eager完成签到,获得积分10
1分钟前
1分钟前
隐形曼青应助端庄的越彬采纳,获得10
1分钟前
1分钟前
无限的盼秋完成签到,获得积分10
1分钟前
YANGLan完成签到,获得积分10
1分钟前
阿尼亚发布了新的文献求助10
1分钟前
1分钟前
1分钟前
快乐的C发布了新的文献求助10
1分钟前
fpbovo发布了新的文献求助10
1分钟前
周晴完成签到 ,获得积分10
1分钟前
楠楠2001完成签到 ,获得积分10
1分钟前
1分钟前
lazysheep完成签到,获得积分10
2分钟前
高分求助中
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3139490
求助须知:如何正确求助?哪些是违规求助? 2790349
关于积分的说明 7795082
捐赠科研通 2446818
什么是DOI,文献DOI怎么找? 1301448
科研通“疑难数据库(出版商)”最低求助积分说明 626238
版权声明 601146