已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Modeling of seizure and seizure-free EEG signals based on stochastic differential equations

脑电图 癫痫发作 随机微分方程 数学 应用数学 计算机科学 心理学 神经科学
作者
Mahnoosh Tajmirriahi,Zahra Amini
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:150: 111104-111104 被引量:20
标识
DOI:10.1016/j.chaos.2021.111104
摘要

• We proposed a novel signal modeling for EEG signals in order to detect seizure and seizure free intervals. • A major advantage of this model is that it does not require decomposing EEG signal to its spectral constructive rhythms. • Our results demonstrated promising performance of proposed model. • This model is computationally very simple and reliable and can be used in real time applications of epileptic EEG classification. • Furthermore, this type of statistical modeling can be used for various EEG segment classifications. seizures commonly occurs in epileptic patients and decrease their quality of life. Investigating past attacks and predict future seizures can be done by exact classification between healthy and seizure based segments in electroencephalograph (EEG) recordings of these patients. Modeling EEG signal can help to extract discriminative features from it. These features make automatic classification more accurate. In this paper we propose a new modeling for EEG signals based on stochastic differential equations (SDE). In this statistical modeling, EEG signals are modeled with a self-similar fractional Levy stable process due to their inherent self-similarity. These processes are considered as response of SDE to the zero mean white symmetric alpha stable noise and inversely, by applying a derivative operator on these processes this white noise could be obtained again. We use a scale invariant fractional derivative operator for this purpose. Having fitted a probability distribution to the histogram of EEG signal after derivation, parameters of fitted histogram can be applied as features for classification task. We modeled healthy and epileptic segments of EEG signal from Bonn University database, and Neurology and Sleep Centre of New Delhi database. As an application of proposed model, we used features obtained from modeled signals to train an SVM classifier. Experimental result revealed highest classification of 99.8% for Bonn University database and 99.1% for Sleep Centre of New Delhi database, between normal and epileptic EEG signals. In conclusion, the proposed model is simple (does not require any decomposition of EEG signals), accurate and computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
强小强完成签到,获得积分10
1秒前
zyjx发布了新的文献求助10
3秒前
zqcn发布了新的文献求助100
5秒前
HudaBala发布了新的文献求助30
5秒前
健壮涵柳完成签到,获得积分20
6秒前
巷耳发布了新的文献求助10
7秒前
鸣风完成签到,获得积分10
9秒前
bohn123完成签到 ,获得积分10
9秒前
注恤明完成签到,获得积分10
12秒前
woshiwuziq完成签到 ,获得积分10
13秒前
邓娅琴完成签到 ,获得积分10
14秒前
粥粥完成签到 ,获得积分10
16秒前
传奇3应助冬天快乐采纳,获得10
18秒前
BUFF完成签到 ,获得积分10
19秒前
星星发布了新的文献求助10
19秒前
柠檬完成签到,获得积分10
19秒前
牛牛完成签到 ,获得积分10
21秒前
温暖眼神完成签到,获得积分10
25秒前
星星2完成签到,获得积分10
27秒前
魁梧的傲芙完成签到,获得积分10
27秒前
彭于晏应助zqcn采纳,获得100
33秒前
gaozy完成签到,获得积分10
33秒前
尘染完成签到 ,获得积分10
33秒前
35秒前
星星完成签到,获得积分10
38秒前
RSU完成签到,获得积分10
38秒前
Original发布了新的文献求助10
43秒前
45秒前
龙骑士25完成签到 ,获得积分10
45秒前
HudaBala发布了新的文献求助10
46秒前
nolan完成签到 ,获得积分10
47秒前
小袁完成签到 ,获得积分10
50秒前
今后应助YLY采纳,获得10
51秒前
闫123完成签到,获得积分10
51秒前
52秒前
乐乐应助misa采纳,获得10
54秒前
Original完成签到,获得积分10
55秒前
YBR完成签到 ,获得积分10
57秒前
鲤鲤完成签到,获得积分10
58秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4625392
求助须知:如何正确求助?哪些是违规求助? 4024621
关于积分的说明 12457524
捐赠科研通 3709416
什么是DOI,文献DOI怎么找? 2046125
邀请新用户注册赠送积分活动 1078032
科研通“疑难数据库(出版商)”最低求助积分说明 960508