Modeling of seizure and seizure-free EEG signals based on stochastic differential equations

脑电图 癫痫发作 随机微分方程 数学 应用数学 计算机科学 心理学 神经科学
作者
Mahnoosh Tajmirriahi,Zahra Amini
出处
期刊:Chaos Solitons & Fractals [Elsevier BV]
卷期号:150: 111104-111104 被引量:20
标识
DOI:10.1016/j.chaos.2021.111104
摘要

• We proposed a novel signal modeling for EEG signals in order to detect seizure and seizure free intervals. • A major advantage of this model is that it does not require decomposing EEG signal to its spectral constructive rhythms. • Our results demonstrated promising performance of proposed model. • This model is computationally very simple and reliable and can be used in real time applications of epileptic EEG classification. • Furthermore, this type of statistical modeling can be used for various EEG segment classifications. seizures commonly occurs in epileptic patients and decrease their quality of life. Investigating past attacks and predict future seizures can be done by exact classification between healthy and seizure based segments in electroencephalograph (EEG) recordings of these patients. Modeling EEG signal can help to extract discriminative features from it. These features make automatic classification more accurate. In this paper we propose a new modeling for EEG signals based on stochastic differential equations (SDE). In this statistical modeling, EEG signals are modeled with a self-similar fractional Levy stable process due to their inherent self-similarity. These processes are considered as response of SDE to the zero mean white symmetric alpha stable noise and inversely, by applying a derivative operator on these processes this white noise could be obtained again. We use a scale invariant fractional derivative operator for this purpose. Having fitted a probability distribution to the histogram of EEG signal after derivation, parameters of fitted histogram can be applied as features for classification task. We modeled healthy and epileptic segments of EEG signal from Bonn University database, and Neurology and Sleep Centre of New Delhi database. As an application of proposed model, we used features obtained from modeled signals to train an SVM classifier. Experimental result revealed highest classification of 99.8% for Bonn University database and 99.1% for Sleep Centre of New Delhi database, between normal and epileptic EEG signals. In conclusion, the proposed model is simple (does not require any decomposition of EEG signals), accurate and computationally efficient.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无聊的依瑶完成签到,获得积分10
1秒前
宗友绿发布了新的文献求助50
1秒前
1秒前
2秒前
AA1Z发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
log发布了新的文献求助10
6秒前
Cookiee完成签到,获得积分10
6秒前
张利双发布了新的文献求助10
6秒前
8秒前
8秒前
9秒前
10秒前
XIAOGONG完成签到,获得积分10
11秒前
shen发布了新的文献求助10
12秒前
李麟发布了新的文献求助10
14秒前
赘婿应助皓月星辰采纳,获得10
14秒前
鳗鱼小卷完成签到 ,获得积分10
15秒前
xxddw发布了新的文献求助20
15秒前
16秒前
夹心发布了新的文献求助10
17秒前
figo完成签到,获得积分10
17秒前
helio给helio的求助进行了留言
20秒前
zpl发布了新的文献求助10
20秒前
21秒前
科研小狗完成签到,获得积分10
23秒前
23秒前
人生如梦应助dilli采纳,获得10
24秒前
852应助松鼠15111采纳,获得30
24秒前
24秒前
soroial完成签到,获得积分10
25秒前
慕青应助狡猾的菠萝采纳,获得10
26秒前
26秒前
劉平果完成签到 ,获得积分10
27秒前
皓月星辰发布了新的文献求助10
27秒前
摸鱼ing发布了新的文献求助10
28秒前
漂亮萝莉发布了新的文献求助10
28秒前
U9A发布了新的文献求助10
29秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962701
求助须知:如何正确求助?哪些是违规求助? 3508707
关于积分的说明 11142251
捐赠科研通 3241458
什么是DOI,文献DOI怎么找? 1791539
邀请新用户注册赠送积分活动 872968
科研通“疑难数据库(出版商)”最低求助积分说明 803517