已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Flavour network-based analysis of food pairing: Application to the recipes of the sub-cuisines from Northeast India

配对 味道 成分 食品科学 数学 配方 计算机科学 化学 物理 超导电性 量子力学
作者
Makinei L.V,M.K. Hazarika
出处
期刊:Current research in food science [Elsevier]
卷期号:5: 1038-1046
标识
DOI:10.1016/j.crfs.2022.05.015
摘要

The flavour network-based analysis of food pairing was applied to the sub-cuisines from Northeast India to examine the food pairing behaviour in terms of the co-occurrence of ingredients with the shared flavouring compounds in food recipes. The method applied was based on an existing procedure in computational gastronomy, wherein the preference for positive pairing is attributed to dairy-based ingredients and negative pairing behaviour is attributed primarily to spice based ingredients. Recipe data was subjected to backbone extraction, projection of the recipe-ingredient-compound tri-partite network, and analysis for prevalence and authenticity of ingredients. Further, the average flavour sharing index of the cuisine was determined with the help of the flavour profiles of the ingredients. The extent of deviation for the original cuisine in comparison to a random cuisine was used to determine the degree of bias in the food pairing behaviour, with the sign as the indicator of the nature of pairing. The analysis identified the ingredients responsible to exhibit a positive or negative pairing pattern in the sub-cuisines. The ingredients from the spice category were the most prevalent and have resulted in the negative pairing behaviour in the cuisines. This role of spices in effecting a negative pairing behaviour is in line with the earlier reports for other Indian regional cuisines. • Network theory was applied to explore the flavour pairing behaviour in recipes from Northeast regional sub-cuisines. • Cooking oil and ingredients from the spice category were the prevalent ingredients. • Prevalence of spices have led to negative food pairing patterns in most of the regional sub-cuisines. • Limited usage of dairy ingredients is also a reason for the non - positive food pairing behaviors in the sub-cuisines.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Missyang发布了新的文献求助10
刚刚
1秒前
1秒前
细心的念薇完成签到,获得积分10
2秒前
顾矜应助三井M采纳,获得10
4秒前
科研通AI2S应助独特雁玉采纳,获得10
4秒前
lzp发布了新的文献求助10
5秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
ding应助科研通管家采纳,获得10
7秒前
xx完成签到 ,获得积分10
8秒前
上官发布了新的文献求助10
8秒前
10秒前
ding应助Ni采纳,获得10
12秒前
内向映天完成签到 ,获得积分10
16秒前
16秒前
Orange应助lzp采纳,获得10
17秒前
Ni发布了新的文献求助10
20秒前
上官完成签到,获得积分10
21秒前
默默的阑悦完成签到,获得积分20
26秒前
小禾一定行完成签到 ,获得积分10
27秒前
31秒前
斯文的凝珍完成签到,获得积分10
32秒前
认真路灯完成签到 ,获得积分10
34秒前
平常的过客完成签到,获得积分10
38秒前
42秒前
阿衍完成签到 ,获得积分10
46秒前
香菜碗里来完成签到,获得积分10
47秒前
别找了睡觉吧完成签到 ,获得积分10
49秒前
49秒前
kyfbrahha完成签到 ,获得积分10
49秒前
51秒前
噜噜晓完成签到 ,获得积分10
53秒前
A宇完成签到,获得积分10
54秒前
三井M发布了新的文献求助10
55秒前
比奇堡第一水母猎手海绵宝宝完成签到,获得积分10
56秒前
二六完成签到,获得积分10
57秒前
冰子完成签到 ,获得积分10
59秒前
33完成签到,获得积分10
1分钟前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Very-high-order BVD Schemes Using β-variable THINC Method 850
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3252945
求助须知:如何正确求助?哪些是违规求助? 2895451
关于积分的说明 8286655
捐赠科研通 2564284
什么是DOI,文献DOI怎么找? 1392206
科研通“疑难数据库(出版商)”最低求助积分说明 652069
邀请新用户注册赠送积分活动 629377