Energy Out-of-distribution Based Fault Detection of Multivariate Time-series Data

离群值 Softmax函数 异常检测 能量(信号处理) 计算机科学 人工神经网络 航程(航空) 人工智能 模式识别(心理学) 断层(地质) 自编码 多元统计 功能(生物学) 数据挖掘 机器学习 统计 数学 工程类 地震学 地质学 进化生物学 生物 航空航天工程
作者
Umang Goswami,Jyoti Rani,Deepak Kumar,Hariprasad Kodamana,Manojkumar Ramteke
出处
期刊:Computer-aided chemical engineering 卷期号:: 1885-1890 被引量:4
标识
DOI:10.1016/b978-0-443-15274-0.50299-7
摘要

A major challenge faced by the chemical process industry is carrying out operations safely and safely. The proposed work entails a fault detection approach for a multivariate time series dataset by utilizing the energy scores instead of the traditional approach. This work proposes a loss function which utilizes the concept of in-distribution and out of the distribution of data. Energy scores are more theoretically aligned with the probability density of the inputs and can be used as a scoring function. For a pre-trained neural network, energy can be utilized as a scoring function and can also be used as a trainable cost function. The concept of out-of-distribution is similar to that of any outlier identification method. Similarly, for energy out of distribution, an energy value which falls below a certain threshold can be considered an outlier and is addressed as out-of-distribution. The values within the range are in-distribution. Higher energy values imply a lower likelihood of occurrence and vice versa. The proposed approach is compared with different deep learning approaches like Auto-encoders (AEs), LSTMs and LSTM-AEs that are traditionally used for anomaly detection and utilize the softmax scores. The Proposed methodology is also compared with some state-of-the-art fault detection methods, such as the PCA and DPCA and returns encouraging results. Energy based out of distribution is coupled with various deep learning methods to identify faulty and normal points. When teamed with the Auto-encoder network, energy-based scoring proved to be of significant dominance compared to other methods. The study was validated for the benchmark Tennessee Eastman data for fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助setfgrew采纳,获得10
刚刚
mimianuo完成签到,获得积分10
1秒前
2秒前
3秒前
xiha西希发布了新的文献求助10
5秒前
Blessing完成签到,获得积分10
6秒前
坦率依珊发布了新的文献求助30
6秒前
6秒前
7秒前
7秒前
Jc关注了科研通微信公众号
9秒前
小林发布了新的文献求助10
9秒前
bkagyin应助Adrenaline采纳,获得10
10秒前
11秒前
Always发布了新的文献求助10
12秒前
顾矜应助七七采纳,获得30
13秒前
CodeCraft应助xiha西希采纳,获得10
17秒前
yayyaya发布了新的文献求助10
18秒前
鬼小妞nice完成签到 ,获得积分10
18秒前
18秒前
无花果应助敏哇哇哇采纳,获得10
18秒前
18秒前
lxy发布了新的文献求助10
19秒前
科研通AI5应助糟糕的凝安采纳,获得30
19秒前
20秒前
海蓝鲸发布了新的文献求助10
23秒前
Heloise发布了新的文献求助10
24秒前
尊敬怀薇发布了新的文献求助10
25秒前
QOP应助刘慧鑫采纳,获得10
26秒前
27秒前
文静盼兰完成签到 ,获得积分10
27秒前
29秒前
爱科研的小多肉完成签到,获得积分10
31秒前
zz完成签到,获得积分10
32秒前
加油搬砖发布了新的文献求助10
34秒前
zz发布了新的文献求助10
36秒前
大模型应助李十七采纳,获得10
36秒前
道以文完成签到,获得积分10
36秒前
Wiesen完成签到,获得积分10
36秒前
37秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The First Nuclear Era: The Life and Times of a Technological Fixer 500
岡本唐貴自伝的回想画集 500
Distinct Aggregation Behaviors and Rheological Responses of Two Terminally Functionalized Polyisoprenes with Different Quadruple Hydrogen Bonding Motifs 450
Ciprofol versus propofol for adult sedation in gastrointestinal endoscopic procedures: a systematic review and meta-analysis 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3670919
求助须知:如何正确求助?哪些是违规求助? 3227795
关于积分的说明 9777243
捐赠科研通 2937977
什么是DOI,文献DOI怎么找? 1609718
邀请新用户注册赠送积分活动 760446
科研通“疑难数据库(出版商)”最低求助积分说明 735959