Energy Out-of-distribution Based Fault Detection of Multivariate Time-series Data

离群值 Softmax函数 异常检测 能量(信号处理) 计算机科学 人工神经网络 航程(航空) 人工智能 模式识别(心理学) 断层(地质) 自编码 多元统计 功能(生物学) 数据挖掘 机器学习 统计 数学 工程类 航空航天工程 地质学 地震学 生物 进化生物学
作者
Umang Goswami,Jyoti Rani,Deepak Kumar,Hariprasad Kodamana,Manojkumar Ramteke
出处
期刊:Computer-aided chemical engineering 卷期号:: 1885-1890 被引量:4
标识
DOI:10.1016/b978-0-443-15274-0.50299-7
摘要

A major challenge faced by the chemical process industry is carrying out operations safely and safely. The proposed work entails a fault detection approach for a multivariate time series dataset by utilizing the energy scores instead of the traditional approach. This work proposes a loss function which utilizes the concept of in-distribution and out of the distribution of data. Energy scores are more theoretically aligned with the probability density of the inputs and can be used as a scoring function. For a pre-trained neural network, energy can be utilized as a scoring function and can also be used as a trainable cost function. The concept of out-of-distribution is similar to that of any outlier identification method. Similarly, for energy out of distribution, an energy value which falls below a certain threshold can be considered an outlier and is addressed as out-of-distribution. The values within the range are in-distribution. Higher energy values imply a lower likelihood of occurrence and vice versa. The proposed approach is compared with different deep learning approaches like Auto-encoders (AEs), LSTMs and LSTM-AEs that are traditionally used for anomaly detection and utilize the softmax scores. The Proposed methodology is also compared with some state-of-the-art fault detection methods, such as the PCA and DPCA and returns encouraging results. Energy based out of distribution is coupled with various deep learning methods to identify faulty and normal points. When teamed with the Auto-encoder network, energy-based scoring proved to be of significant dominance compared to other methods. The study was validated for the benchmark Tennessee Eastman data for fault detection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
choaznu完成签到 ,获得积分10
2秒前
2秒前
馥日祎完成签到,获得积分20
2秒前
无奈的问安完成签到,获得积分10
3秒前
hello_25baby完成签到,获得积分10
4秒前
4秒前
jjjjjjjj完成签到,获得积分0
4秒前
6秒前
山楂发布了新的文献求助10
7秒前
xx发布了新的文献求助10
7秒前
8秒前
9秒前
yzee完成签到,获得积分10
9秒前
小墨应助chenyunxia采纳,获得10
12秒前
wang发布了新的文献求助10
12秒前
13秒前
爱学习完成签到,获得积分10
14秒前
17秒前
17秒前
17秒前
18秒前
lucky完成签到,获得积分20
18秒前
lin完成签到 ,获得积分10
18秒前
19秒前
19秒前
ls完成签到,获得积分10
21秒前
22秒前
小巧的柏柳完成签到 ,获得积分10
23秒前
科目三应助灵巧的诗筠采纳,获得10
23秒前
小盘子发布了新的文献求助10
24秒前
考博圣体完成签到 ,获得积分10
24秒前
王博士完成签到 ,获得积分10
25秒前
Ava应助daheeeee采纳,获得10
26秒前
山楂完成签到,获得积分10
27秒前
自觉的月亮完成签到,获得积分10
29秒前
xcs完成签到,获得积分10
29秒前
30秒前
五十一笑声应助sssss采纳,获得30
32秒前
丁宇卓完成签到 ,获得积分10
32秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148139
求助须知:如何正确求助?哪些是违规求助? 2799228
关于积分的说明 7833916
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307237
科研通“疑难数据库(出版商)”最低求助积分说明 628119
版权声明 601655