Parameterized Gompertz-Guided Morphological AutoEncoder for Predicting Pulmonary Nodule Growth

自编码 Gompertz函数 计算机科学 人工智能 结核(地质) 参数化复杂度 模式识别(心理学) 机器学习 深度学习 算法 生物 古生物学
作者
Jiansheng Fang,Jingwen Wang,Anwei Li,Yuguang Yan,Hongbo Liu,Jiajian Li,Huifang Yang,Yonghe Hou,Xueqing Xu,Ming Yang,Jiang Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3602-3613
标识
DOI:10.1109/tmi.2023.3297209
摘要

The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
公茂源完成签到 ,获得积分10
1秒前
共享精神应助spurs17采纳,获得30
2秒前
BONBON发布了新的文献求助10
3秒前
liuqian发布了新的文献求助10
3秒前
浮生完成签到 ,获得积分10
3秒前
奔跑的青霉素完成签到 ,获得积分10
3秒前
linxue发布了新的文献求助10
3秒前
科研通AI5应助Annie采纳,获得10
3秒前
4秒前
执着发布了新的文献求助20
4秒前
原鑫完成签到,获得积分10
4秒前
寒涛先生完成签到,获得积分20
5秒前
6秒前
科研通AI5应助呆萌的元枫采纳,获得30
6秒前
6秒前
gzsy发布了新的文献求助10
6秒前
8秒前
10秒前
10秒前
哄不好的南完成签到,获得积分10
10秒前
makus完成签到,获得积分10
10秒前
西西歪完成签到,获得积分10
12秒前
12秒前
深情安青应助BONBON采纳,获得10
12秒前
小马完成签到,获得积分10
13秒前
13秒前
细腻沅发布了新的文献求助10
15秒前
火羽白然完成签到 ,获得积分10
15秒前
冰西瓜完成签到 ,获得积分10
16秒前
季忆发布了新的文献求助10
16秒前
16秒前
cc发布了新的文献求助10
17秒前
Hello应助糊涂的小伙采纳,获得10
17秒前
甜甜的冷霜完成签到,获得积分10
17秒前
hkxfg发布了新的文献求助10
18秒前
谭谨川完成签到,获得积分10
18秒前
李爱国应助云中渊采纳,获得10
19秒前
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808