Parameterized Gompertz-Guided Morphological AutoEncoder for Predicting Pulmonary Nodule Growth

自编码 Gompertz函数 计算机科学 人工智能 结核(地质) 参数化复杂度 模式识别(心理学) 机器学习 深度学习 算法 生物 古生物学
作者
Jiansheng Fang,Jingwen Wang,Anwei Li,Yuguang Yan,Hongbo Liu,Jiajian Li,Huifang Yang,Yonghe Hou,Xuening Yang,Ming Yang,Jiang Liu
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:42 (12): 3602-3613
标识
DOI:10.1109/tmi.2023.3297209
摘要

The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Me完成签到,获得积分10
1秒前
2秒前
勤恳函完成签到,获得积分10
2秒前
吲哚好呀发布了新的文献求助10
2秒前
3秒前
4秒前
4秒前
研友_LOaymZ完成签到 ,获得积分20
4秒前
111完成签到,获得积分10
6秒前
迷路尔珍完成签到 ,获得积分10
8秒前
8秒前
yuki发布了新的文献求助10
9秒前
9秒前
9秒前
zzulpc完成签到,获得积分10
9秒前
叶长亭完成签到,获得积分10
9秒前
DY发布了新的文献求助10
12秒前
二斤瓜子完成签到,获得积分10
14秒前
桐桐应助人来人往采纳,获得10
14秒前
15秒前
淡泊宁静完成签到,获得积分10
15秒前
15秒前
yuki完成签到,获得积分10
16秒前
17秒前
17秒前
夜凉如水完成签到,获得积分10
18秒前
优美的翠柏完成签到,获得积分10
19秒前
隐形曼青应助DY采纳,获得10
19秒前
pluto应助薛定谔的猫采纳,获得10
21秒前
22秒前
yy发布了新的文献求助10
22秒前
科研通AI2S应助vault777采纳,获得10
24秒前
zx完成签到,获得积分20
24秒前
24秒前
今后应助謓言采纳,获得10
25秒前
张思琪完成签到,获得积分10
25秒前
acadedog完成签到 ,获得积分10
25秒前
26秒前
27秒前
人来人往发布了新的文献求助10
27秒前
高分求助中
Evolution 10000
ISSN 2159-8274 EISSN 2159-8290 1000
Becoming: An Introduction to Jung's Concept of Individuation 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3159900
求助须知:如何正确求助?哪些是违规求助? 2810945
关于积分的说明 7889920
捐赠科研通 2469918
什么是DOI,文献DOI怎么找? 1315243
科研通“疑难数据库(出版商)”最低求助积分说明 630768
版权声明 602012