miRNA-Disease Association Prediction based on Heterogeneous Graph Transformer with Multi-view similarity and Random Auto-encoder

计算机科学 编码器 图形 小RNA 人工智能 理论计算机科学 数据挖掘 算法 基因 生物 生物化学 操作系统
作者
Yinbo Liu,Xiaodi Yan,Jun Li,Xinxin Ren,Qi Wu,Gang-Ao Wang,Y. Chen,Xiaolei Zhu
标识
DOI:10.1109/bibm58861.2023.10385493
摘要

MicroRNAs (miRNAs) are a class of short non-coding single-stranded RNA molecules that play a key role in gene expression regulation. Understanding the association between miRNAs and diseases is crucial for disease diagnosis and treatment. Although the wet experimental methods can be used to determine the associations, they are both laborious and expensive. In this paper, we propose a novel computational method called TWMHGT for predicting the associations between miRNAs and diseases based a two-way Multi-layer Heterogeneous Graph Transformer (MHGT) framework. For the first way, multi-view similarity of miRNAs and diseases is used as the input encodings for MHGT, and for the second way, random auto-encoders is used to generate the input encodings. In each MHGT way, the encodings of each layer are concatenated to obtain comprehensive embeddings of miRNAs and diseases, thereby integrating multiple high-level information. Then, the attention mechanisms are used to fuse the embeddings generated from the two-way MHGT. During the decoding stage, the fused embeddings are decoded to obtain the predicted association matrix by using matrix multiplication. Our model was benchmarked on two datasets and the 5-fold and 10-fold cross-validation results show that TWMHGT outperforms the state-of-the-art methods in terms of AUC, AUPR, accuracy, sensitivity, and specificity. Furthermore, we conducted case studies on three different diseases to validate the predictive performance of TWMHGT. The results show excellent performance in all cases, indicating the potential of TWMHGT in discovering novel miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
yuyu发布了新的文献求助10
1秒前
1秒前
颜沛文发布了新的文献求助10
3秒前
3秒前
145完成签到,获得积分10
3秒前
两米七发布了新的文献求助20
4秒前
凶凶发布了新的文献求助10
4秒前
轻松刚完成签到,获得积分10
5秒前
sulh发布了新的文献求助10
5秒前
平淡寒天发布了新的文献求助10
5秒前
5秒前
钰凛发布了新的文献求助10
7秒前
善意小霸王应助sunny202021采纳,获得10
7秒前
栾小鱼发布了新的文献求助10
7秒前
10秒前
颜沛文完成签到,获得积分10
10秒前
10秒前
Liu完成签到 ,获得积分10
13秒前
烟花应助vivid采纳,获得10
13秒前
13秒前
平淡寒天完成签到,获得积分10
16秒前
17秒前
mmmmmmgm完成签到 ,获得积分10
17秒前
可爱的函函应助cheche采纳,获得10
17秒前
DE2022完成签到,获得积分10
18秒前
18秒前
霸气雅旋发布了新的文献求助10
18秒前
汉堡包应助聪明紫山采纳,获得10
19秒前
优雅的念真完成签到,获得积分10
19秒前
19秒前
winky发布了新的文献求助30
20秒前
江湖完成签到 ,获得积分10
20秒前
充电宝应助哈哈哈采纳,获得10
21秒前
21秒前
Martin发布了新的文献求助10
22秒前
酷波er应助feifei采纳,获得10
23秒前
SciGPT应助YZJing采纳,获得10
23秒前
55完成签到 ,获得积分10
24秒前
24秒前
高分求助中
Sustainability in Tides Chemistry 2000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3125620
求助须知:如何正确求助?哪些是违规求助? 2775921
关于积分的说明 7728309
捐赠科研通 2431379
什么是DOI,文献DOI怎么找? 1291979
科研通“疑难数据库(出版商)”最低求助积分说明 622295
版权声明 600376