miRNA-Disease Association Prediction based on Heterogeneous Graph Transformer with Multi-view similarity and Random Auto-encoder

计算机科学 编码器 图形 小RNA 人工智能 理论计算机科学 数据挖掘 算法 基因 生物 生物化学 操作系统
作者
Yinbo Liu,Xiaodi Yan,Jun Li,Xinxin Ren,Qi Wu,Gang-Ao Wang,Y. Chen,Xiaolei Zhu
标识
DOI:10.1109/bibm58861.2023.10385493
摘要

MicroRNAs (miRNAs) are a class of short non-coding single-stranded RNA molecules that play a key role in gene expression regulation. Understanding the association between miRNAs and diseases is crucial for disease diagnosis and treatment. Although the wet experimental methods can be used to determine the associations, they are both laborious and expensive. In this paper, we propose a novel computational method called TWMHGT for predicting the associations between miRNAs and diseases based a two-way Multi-layer Heterogeneous Graph Transformer (MHGT) framework. For the first way, multi-view similarity of miRNAs and diseases is used as the input encodings for MHGT, and for the second way, random auto-encoders is used to generate the input encodings. In each MHGT way, the encodings of each layer are concatenated to obtain comprehensive embeddings of miRNAs and diseases, thereby integrating multiple high-level information. Then, the attention mechanisms are used to fuse the embeddings generated from the two-way MHGT. During the decoding stage, the fused embeddings are decoded to obtain the predicted association matrix by using matrix multiplication. Our model was benchmarked on two datasets and the 5-fold and 10-fold cross-validation results show that TWMHGT outperforms the state-of-the-art methods in terms of AUC, AUPR, accuracy, sensitivity, and specificity. Furthermore, we conducted case studies on three different diseases to validate the predictive performance of TWMHGT. The results show excellent performance in all cases, indicating the potential of TWMHGT in discovering novel miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kw98完成签到 ,获得积分10
刚刚
1秒前
gjl完成签到,获得积分10
2秒前
2秒前
阔达碧空发布了新的文献求助10
2秒前
5秒前
samara发布了新的文献求助10
5秒前
ding应助小八统治世界采纳,获得10
5秒前
8秒前
8秒前
淡然靖柔发布了新的文献求助10
8秒前
Bear完成签到,获得积分10
9秒前
10秒前
11秒前
12秒前
chl发布了新的文献求助10
12秒前
走着完成签到,获得积分10
14秒前
毛毛酱发布了新的文献求助30
15秒前
16秒前
16秒前
17秒前
阴森女公爵关注了科研通微信公众号
17秒前
尼克的朱迪完成签到,获得积分10
18秒前
18秒前
18秒前
19秒前
ttg990720发布了新的文献求助10
19秒前
20秒前
20秒前
有魅力强炫完成签到,获得积分10
20秒前
周涛完成签到,获得积分10
20秒前
zhouti497541171完成签到,获得积分10
22秒前
光翟君发布了新的文献求助10
22秒前
斯文明杰发布了新的文献求助10
23秒前
24秒前
24秒前
爆米花应助泠泠泠萘采纳,获得10
24秒前
郭靖发布了新的文献求助10
24秒前
万能图书馆应助老jia采纳,获得10
24秒前
隐形曼青应助Li梨采纳,获得10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4633192
求助须知:如何正确求助?哪些是违规求助? 4029241
关于积分的说明 12466657
捐赠科研通 3715470
什么是DOI,文献DOI怎么找? 2050148
邀请新用户注册赠送积分活动 1081735
科研通“疑难数据库(出版商)”最低求助积分说明 964033