miRNA-Disease Association Prediction based on Heterogeneous Graph Transformer with Multi-view similarity and Random Auto-encoder

计算机科学 编码器 图形 小RNA 人工智能 理论计算机科学 数据挖掘 算法 基因 生物 生物化学 操作系统
作者
Yinbo Liu,Xiaodi Yan,Jun Li,Xinxin Ren,Qi Wu,Gang-Ao Wang,Y. Chen,Xiaolei Zhu
标识
DOI:10.1109/bibm58861.2023.10385493
摘要

MicroRNAs (miRNAs) are a class of short non-coding single-stranded RNA molecules that play a key role in gene expression regulation. Understanding the association between miRNAs and diseases is crucial for disease diagnosis and treatment. Although the wet experimental methods can be used to determine the associations, they are both laborious and expensive. In this paper, we propose a novel computational method called TWMHGT for predicting the associations between miRNAs and diseases based a two-way Multi-layer Heterogeneous Graph Transformer (MHGT) framework. For the first way, multi-view similarity of miRNAs and diseases is used as the input encodings for MHGT, and for the second way, random auto-encoders is used to generate the input encodings. In each MHGT way, the encodings of each layer are concatenated to obtain comprehensive embeddings of miRNAs and diseases, thereby integrating multiple high-level information. Then, the attention mechanisms are used to fuse the embeddings generated from the two-way MHGT. During the decoding stage, the fused embeddings are decoded to obtain the predicted association matrix by using matrix multiplication. Our model was benchmarked on two datasets and the 5-fold and 10-fold cross-validation results show that TWMHGT outperforms the state-of-the-art methods in terms of AUC, AUPR, accuracy, sensitivity, and specificity. Furthermore, we conducted case studies on three different diseases to validate the predictive performance of TWMHGT. The results show excellent performance in all cases, indicating the potential of TWMHGT in discovering novel miRNA-disease associations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TanFT完成签到,获得积分10
1秒前
桌球有点蔡先生完成签到,获得积分10
1秒前
猪蹄发布了新的文献求助10
1秒前
CodeCraft应助知识探索家采纳,获得10
2秒前
皮皮虾小段完成签到 ,获得积分10
2秒前
卷粉儿发布了新的文献求助80
2秒前
王博林发布了新的文献求助10
4秒前
5秒前
小艾同学完成签到 ,获得积分10
7秒前
wy.he应助桌球有点蔡先生采纳,获得10
9秒前
NexusExplorer应助阿楊采纳,获得10
13秒前
田様应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
ED应助科研通管家采纳,获得10
15秒前
所所应助王博林采纳,获得10
15秒前
英姑应助科研通管家采纳,获得10
15秒前
张静枝完成签到 ,获得积分10
15秒前
bkagyin应助科研通管家采纳,获得10
15秒前
小二郎应助科研通管家采纳,获得10
15秒前
所所应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
15秒前
科目三应助科研通管家采纳,获得30
15秒前
ED应助科研通管家采纳,获得10
15秒前
情怀应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
15秒前
CHENG_2025应助安静的棉花糖采纳,获得10
15秒前
15秒前
15秒前
SYLH应助hlf采纳,获得10
16秒前
yuhui完成签到,获得积分10
17秒前
在吃饭的时候吃饭完成签到,获得积分10
18秒前
19秒前
kw完成签到 ,获得积分10
19秒前
穆易羊完成签到 ,获得积分10
21秒前
mmyhn应助79采纳,获得20
22秒前
22秒前
负责冰烟完成签到 ,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324