Discovering small-molecule senolytics with deep neural networks

人工神经网络 深层神经网络 计算机科学 人工智能
作者
Felix Wong,Satotaka Omori,Nina M. Donghia,Erica J. Zheng,James J. Collins
出处
期刊:Nature Aging 卷期号:3 (6): 734-750 被引量:25
标识
DOI:10.1038/s43587-023-00415-z
摘要

The accumulation of senescent cells is associated with aging, inflammation and cellular dysfunction. Senolytic drugs can alleviate age-related comorbidities by selectively killing senescent cells. Here we screened 2,352 compounds for senolytic activity in a model of etoposide-induced senescence and trained graph neural networks to predict the senolytic activities of >800,000 molecules. Our approach enriched for structurally diverse compounds with senolytic activity; of these, three drug-like compounds selectively target senescent cells across different senescence models, with more favorable medicinal chemistry properties than, and selectivity comparable to, those of a known senolytic, ABT-737. Molecular docking simulations of compound binding to several senolytic protein targets, combined with time-resolved fluorescence energy transfer experiments, indicate that these compounds act in part by inhibiting Bcl-2, a regulator of cellular apoptosis. We tested one compound, BRD-K56819078, in aged mice and found that it significantly decreased senescent cell burden and mRNA expression of senescence-associated genes in the kidneys. Our findings underscore the promise of leveraging deep learning to discover senotherapeutics. Senolytic compounds have shown promise for the treatment of aging-related diseases in animal models. Here, to discover new small molecule senolytics, Wong, Omori and colleagues introduce a graph neural network platform, identify structurally diverse compounds with favorable drug-like properties and confirm one compound's in vivo activity in aged mice.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
AI倩发布了新的文献求助10
刚刚
kk完成签到,获得积分10
1秒前
科研猿完成签到,获得积分10
1秒前
3秒前
3秒前
Orange应助yacon采纳,获得10
3秒前
3秒前
JamesPei应助tfldog采纳,获得10
4秒前
cream发布了新的文献求助10
5秒前
7秒前
7秒前
8秒前
jwb711发布了新的文献求助10
9秒前
小太阳发布了新的文献求助10
9秒前
汉堡包应助Alice采纳,获得10
10秒前
10秒前
10秒前
11秒前
Lucas应助狄谷南采纳,获得10
12秒前
LX发布了新的文献求助10
12秒前
贝希尔发布了新的文献求助10
13秒前
研友_V8Qmr8发布了新的文献求助10
13秒前
David发布了新的文献求助10
13秒前
13秒前
wangshibing完成签到,获得积分10
13秒前
玹玗完成签到,获得积分20
14秒前
linty应助JoJo采纳,获得10
14秒前
xz333126发布了新的文献求助10
14秒前
15秒前
科研通AI2S应助XPR采纳,获得10
15秒前
wang完成签到,获得积分10
15秒前
daguan完成签到,获得积分10
15秒前
洁净衬衫完成签到 ,获得积分10
15秒前
15秒前
白222发布了新的文献求助10
15秒前
wangshibing发布了新的文献求助10
16秒前
cc发布了新的文献求助10
16秒前
顺利的伊应助拾忆采纳,获得20
17秒前
cream完成签到,获得积分20
17秒前
与木发布了新的文献求助10
17秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148415
求助须知:如何正确求助?哪些是违规求助? 2799563
关于积分的说明 7835686
捐赠科研通 2456891
什么是DOI,文献DOI怎么找? 1307645
科研通“疑难数据库(出版商)”最低求助积分说明 628217
版权声明 601655