Response reconstruction based on measurement matrix optimization in compressed sensing for structural health monitoring

结构健康监测 压缩传感 基质(化学分析) 结构工程 材料科学 计算机科学 工程类 算法 复合材料
作者
Xiao Hua Zhang,Xueshan Xiao,Z. Yang,Sheng-En Fang
出处
期刊:Advances in Structural Engineering [SAGE]
标识
DOI:10.1177/13694332241300670
摘要

Structural health monitoring (SHM) data have a large volume, increasing the cost of data storage and transmission and the difficulties of structural parameter identification. The compressed sensing (CS) theory provides a signal acquisition and analysis strategy. Signal reconstruction using limited measurements and CS has attracted significant interest. However, the dynamic responses obtained from civil engineering structures contain noise, resulting in sparse samples and reducing the signal reconstruction accuracy. Therefore, we propose an optimization algorithm for the measurement matrix integrating the Karhunen-Loeve transform (KLT) and approximate QR decomposition (KLT-QR) to improve the accuracy of dynamic response reconstruction of SHM data. The KLT reduces the correlation between the measurement matrix and the sparse basis. The approximate QR decomposition is used to improve the independence between the column vectors of the measurement matrix, optimizing the measurement matrix. The experimental results for a laboratory steel beam indicate that the proposed KLT-QR algorithm outperforms three other algorithms regarding the accuracy of dynamic response reconstruction (acceleration, displacement, and strain), especially at high compression ratios. The acceleration responses from the Ji’an Bridge are utilized to verify the advantages of the proposed algorithm. The results demonstrate that the KLT-QR algorithm has the highest accuracy of reconstructing the vibration signals and yields better Fourier spectra than the conventional Gaussian measurement matrix.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
苏木发布了新的文献求助10
1秒前
烟花应助zyd采纳,获得10
1秒前
1秒前
1秒前
huaaaaaa1发布了新的文献求助10
2秒前
CipherSage应助童梓祺采纳,获得10
2秒前
李健应助Man采纳,获得10
2秒前
Lu完成签到,获得积分10
2秒前
3秒前
3秒前
完美世界应助淡然的大碗采纳,获得10
3秒前
3秒前
pluto应助liansj采纳,获得10
5秒前
Maer发布了新的文献求助10
5秒前
5秒前
5秒前
冷酷莫茗发布了新的文献求助10
5秒前
FR应助传统的如霜采纳,获得10
6秒前
7秒前
dddd完成签到,获得积分10
7秒前
zhtgang完成签到,获得积分10
7秒前
洗杯子发布了新的文献求助10
7秒前
CipherSage应助huaaaaaa1采纳,获得10
7秒前
7秒前
8秒前
8秒前
DukeTao发布了新的文献求助10
9秒前
西北孤傲的狼完成签到,获得积分10
9秒前
Foremelon完成签到,获得积分10
10秒前
10秒前
小蘑菇应助纳米纤维素采纳,获得10
11秒前
骨小梁完成签到,获得积分20
11秒前
田様应助朴实草莓采纳,获得10
11秒前
枝桠发布了新的文献求助10
12秒前
洗杯子完成签到,获得积分10
13秒前
称心如意完成签到 ,获得积分10
13秒前
zyd发布了新的文献求助10
13秒前
14秒前
骨小梁发布了新的文献求助10
14秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134700
求助须知:如何正确求助?哪些是违规求助? 2785629
关于积分的说明 7773333
捐赠科研通 2441325
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825