Quantifying the mechanical properties of skin in vivo and ex vivo to optimise microneedle device design

离体 角质层 体内 透皮 生物医学工程 人体皮肤 材料科学 医学 病理 药理学 生物 遗传学 生物技术
作者
Rachel Beth Groves
链接
摘要

The transdermal delivery of therapeutics is limited to only a few molecules due to the outermost layer of skin, the stratum corneum, which acts as a barrier against the ingress of substances into the body. Microneedle arrays, which are commonly between 70μm and 900μm in length, have been developed as a method of promoting drug and vaccine delivery by creating microperforations in the stratum corneum to increase transport into the skin. The design of microneedle devices has significantly developed over recent years to allow for the delivery of numerous compounds into in vivo and ex vivo skin. Microneedle devices are now beginning to be taken away from the laboratory and towards clinical use but to achieve this it is desirable that all microneedles within the device penetrate skin in vivo to a sufficient depth. As microneedle devices have been extensively tested in cadaver tissue, a greater understanding of the mechanical properties of skin in vivo and ex vivo is required and to hypothesise whether animal models such as murine skin ex vivo serves as an appropriate model for human skin ex vivo. Measurements were performed on human skin in vivo by applying small cylindrical and spherical indenters to the volar aspect of the forearm on 7 volunteers. The average Young’s Modulus of the skin was 39.64kPa and 65.86kPa when applying the spherical and cylindrical indenters respectively. In a series of tensile measurements performed at three load axis orientations using ex vivo samples from human and murine donors, it was found that the key variation was attributed to the deformation experienced at initial low loads. This was shown to be significantly longer for human skin with an average of 5.10mm, when compared with murine skin which had an average of 1.61mm (p<0.05). Histological examination showed that human skin was far thicker, with an increased volume of dermal tissue, compared with murine skin, and this anatomical variation may have been the main reason why human and murine skin exhibited different mechanical properties. Finite element models (FEMs) were established of skin indentation in vivo, which incorporated the epidermis, dermis and hypodermis, and of human and murine skin in tension. Appropriate boundary conditions and mesh densities were implemented and the geometries were taken from real life measurements where possible. The Ogden material model of hyperelasticity was chosen to represent the skin layers for the FEM of skin indentation and an anisotropic material was used to describe human and murine skin in tension by adapting the Weiss et al model of transverse isotropy. Inverse finite element analysis was then used to match the FEMs with the experimental measurements. The multilayered FEM of skin was correlated against the in vivo indentation tests where model and experimental fit gave average root mean squared errors (R2 ave) of between 0.00103 and 0.0488 for the 7 volunteers. The optimal material parameters showed correlations with experimental measurements, where volunteers 1, 6 and 7 were shown to have the stiffest skin through Young’s Modulus calculations, which was reflected in the increased nonlinearity of the parameters extracted for the hypodermal layer. A stronger agreement between model and experiment for the anisotropic model of human and murine skin in tension was shown where the R2 ave was between 0.0038 and 0.0163. Again, model and experimental observations were shown to correlate where there was a significant difference (p<0.05) between 6 of the 14 average material parameters (C2, C3,1, λ1, C3,2, C3,3, λ3) when comparing human to murine skin. The multilayered FEM of human skin in vivo was further validated by modelling the application of a single microneedle to skin, prior to penetration. The model was then correlated against in vivo measurements performed on one of the volunteers and it was found that the model provided a good approximation for the experimental measurements. Using the multilayered FEM of human skin indentation, it was possible to model the deflection of the skin during the application of a pressure load comparable to microneedle array application. This allowed for the development of several curved microneedle arrays which aimed to distribute the load over all microneedles to potentially create uniform skin penetration by all those within the array. The microneedles were manufactured simply and quickly using wire cutting technologies from stainless steel and tested in human skin in vivo and in ex vivo samples of human and murine skin, where methylene blue was applied to identify any microchannels created by the microneedles. Preliminary measurements taken from murine skin ex vivo were discounted as microchannel staining was not possible. Analyses performed on human skin ex vivo showed penetration at high loads (4-5N) for all four microneedle array designs and the microneedle array with the smallest curvature (0.95mm) had the most consistent puncture for all microneedles, however puncture in vivo was difficult to characterise using approach developed. Therefore further work is required to assess more volunteers and donors. This study has highlighted the great differences in the mechanical properties of human and murine skin, suggesting that murine skin is not an appropriate model to assess microneedle puncture. It has also shown that the underlying tissues and hypodermis play a pivotal role in microneedle insertion mechanics.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eva完成签到,获得积分10
刚刚
1秒前
解紊完成签到,获得积分10
1秒前
1秒前
1秒前
LeeY.发布了新的文献求助10
2秒前
2秒前
慕青应助liguanyu1078采纳,获得10
2秒前
xzz完成签到,获得积分10
2秒前
黄不愁发布了新的文献求助10
3秒前
3秒前
崖鲨假藕给崖鲨假藕的求助进行了留言
3秒前
BioNMR完成签到,获得积分10
4秒前
niNe3YUE应助之华采纳,获得10
4秒前
完美世界应助风间琉璃采纳,获得30
4秒前
4秒前
King完成签到,获得积分10
4秒前
4秒前
4秒前
sue完成签到,获得积分10
5秒前
5秒前
秋墨发布了新的文献求助10
5秒前
共享精神应助阔达的惠采纳,获得10
6秒前
7秒前
重要难摧发布了新的文献求助20
7秒前
垃圾发布了新的文献求助10
7秒前
咸鱼咸发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助20
8秒前
9秒前
CC发布了新的文献求助10
9秒前
qfyyyyyyy发布了新的文献求助10
9秒前
o0关注了科研通微信公众号
9秒前
科研通AI6应助清爽的可仁采纳,获得10
10秒前
红书包发布了新的文献求助10
10秒前
xiaomings007发布了新的文献求助10
10秒前
天天快乐应助刘隽轩采纳,获得10
10秒前
sue发布了新的文献求助10
10秒前
11秒前
Sophia发布了新的文献求助20
11秒前
x其妙完成签到,获得积分10
11秒前
高分求助中
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 720
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5587661
求助须知:如何正确求助?哪些是违规求助? 4670874
关于积分的说明 14784407
捐赠科研通 4623392
什么是DOI,文献DOI怎么找? 2531379
邀请新用户注册赠送积分活动 1500063
关于科研通互助平台的介绍 1468151