Identification of Newly Emerging Influenza Viruses by Detecting the Virally Infected Cells Based on Surface Enhanced Raman Spectroscopy and Principal Component Analysis

病毒学 病毒 病毒包膜 甲型流感病毒 化学 鉴定(生物学) 主成分分析 生物 计算生物学 计算机科学 植物 人工智能
作者
Jae‐Young Lim,Jung-soo Nam,Hyunku Shin,Jaena Park,Hye-in Song,Min-Sung Kang,Kwang‐il Lim,Yeonho Choi
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:91 (9): 5677-5684 被引量:54
标识
DOI:10.1021/acs.analchem.8b05533
摘要

Rapid diagnosis and quarantine of influenza virus mutant-infected people is critical to contain the fatal viral infection spread because effective antiviral drugs are normally not available. Conventional methods, however, cannot be used for the diagnosis because these methods need predefined labels, likely also unavailable for just emerging viruses. Here, we propose label-free identification of cells infected with different influenza viruses based on surface-enhanced Raman spectroscopy (SERS) and principal component analysis (PCA). Viral envelope proteins that are displayed on the surface of cells after infection of influenza viruses were targeted for this identification. Cells that expressed the envelope proteins of A/WSN/33 H1N1 or A/California/04/2009 H1N1 influenza viruses produced distinct SERS signals. Cells that displayed combinations of the envelope proteins from these two viral variants, an indication of emergence of a new virus, also generated characteristic SERS patterns. However, the cell's own surface proteins often hindered the identification of virally infected cells by producing SERS peaks similar to viral ones. PCA of the obtained SERS patterns could effectively capture the virus-specific signal components from the jumbled SERS peaks. Our study demonstrates a potential of combination of SERS and PCA to identify newly emerging influenza viruses through sensing the cells infected with the viruses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
香蕉觅云应助飘逸的巧凡采纳,获得100
1秒前
稀里糊涂发布了新的文献求助10
1秒前
CSUST科研一哥应助秦尔晗采纳,获得20
2秒前
科研蠢狗发布了新的文献求助10
2秒前
hqn完成签到 ,获得积分10
3秒前
joleisalau发布了新的文献求助10
3秒前
AARON发布了新的文献求助10
3秒前
CodeCraft应助农大彭于晏采纳,获得10
3秒前
Owen应助Max采纳,获得10
4秒前
热情的幻丝完成签到,获得积分20
5秒前
smy发布了新的文献求助10
7秒前
8秒前
钮白桃完成签到,获得积分10
8秒前
9秒前
10秒前
bkagyin应助研友_85YNe8采纳,获得20
12秒前
12秒前
小二郎应助fudandan采纳,获得10
13秒前
玲玲完成签到 ,获得积分20
13秒前
14秒前
慕青应助lzq采纳,获得10
14秒前
逆行发布了新的文献求助10
14秒前
一川烟叶完成签到,获得积分10
15秒前
科研通AI2S应助4444采纳,获得10
16秒前
Max完成签到,获得积分10
16秒前
Zilch发布了新的文献求助10
17秒前
17秒前
科研通AI2S应助yjj采纳,获得10
17秒前
咕咕发布了新的文献求助10
18秒前
shenghaowen完成签到,获得积分10
18秒前
Max发布了新的文献求助10
19秒前
开心的眼睛完成签到,获得积分10
19秒前
萨特完成签到,获得积分10
19秒前
星辰大海应助科研蠢狗采纳,获得10
21秒前
没在清醒发布了新的文献求助10
21秒前
逆行完成签到,获得积分20
22秒前
AppleDog完成签到,获得积分10
24秒前
张祖伦完成签到,获得积分10
26秒前
26秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
中国区域地质志-山东志 560
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243096
求助须知:如何正确求助?哪些是违规求助? 2887115
关于积分的说明 8246636
捐赠科研通 2555713
什么是DOI,文献DOI怎么找? 1383818
科研通“疑难数据库(出版商)”最低求助积分说明 649757
邀请新用户注册赠送积分活动 625631