Steel bridge corrosion inspection with combined vision and thermographic images

人工智能 卷积神经网络 计算机视觉 计算机科学 腐蚀 红外线的 夜视 材料科学 光学 物理 复合材料
作者
Hyung Jin Lim,Soonkyu Hwang,Hyeonjin Kim,Hoon Sohn
出处
期刊:Structural Health Monitoring-an International Journal [SAGE]
卷期号:20 (6): 3424-3435 被引量:32
标识
DOI:10.1177/1475921721989407
摘要

In this study, a faster region-based convolutional neural network is constructed and applied to the combined vision and thermographic images for automated detection and classification of surface and subsurface corrosion in steel bridges. First, a hybrid imaging system is developed for the seamless integration of vision and infrared images. Herein, a three-dimensional red/green/blue vision image is obtained with a vision camera, and a one-dimensional active infrared (IR) amplitude image is obtained from the infrared camera for temperature measurements with halogen lamps as the heat source. Subsequently, the three-dimensional red/green/blue vision image is converted to a two-dimensional chroma blue- and red-difference (CbCr) image because the CbCr image is known to be more sensitive to surface corrosion than the red/green/blue image. A combined three-dimensional (CbCr-IR) image is then constructed by fusing the two-dimensional CbCr image and the one-dimensional infrared image. For the automated corrosion detection and classification, a faster region-based convolutional neural network is constructed and trained using the combined three-dimensional CbCr-IR images of surface and subsurface corrosion on steel bridge structures. Finally, the performance of the trained, faster region-based convolutional neural network is evaluated using the images acquired from real bridges and compared with faster region-based convolutional neural networks trained by other vision and IR-based images. The uniqueness of this study is attributed to the (1) corrosion detection reliability improvements based on the fusion of vision and infrared images, (2) automated corrosion detection and classification with a faster region-based convolutional neural network, (3) detection of subsurface corrosion that is not detectable using vision images only, and (4) application to field bridge inspection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小马甲应助Litoivda采纳,获得20
刚刚
1秒前
qiu_bajin完成签到,获得积分10
1秒前
阳洋完成签到,获得积分10
1秒前
我是老大应助JIA采纳,获得10
1秒前
顺心冰岚关注了科研通微信公众号
2秒前
顺心的尔安完成签到,获得积分10
2秒前
3秒前
笨笨凡松发布了新的文献求助10
3秒前
layers发布了新的文献求助10
3秒前
science HY发布了新的文献求助10
4秒前
科研通AI2S应助lou采纳,获得10
4秒前
李爱国应助旺旺雪饼采纳,获得10
4秒前
4秒前
星辰大海应助大力醉蓝采纳,获得30
4秒前
jklwss完成签到,获得积分10
4秒前
天天快乐应助zhanghan采纳,获得10
5秒前
科研通AI2S应助xx采纳,获得10
5秒前
chen发布了新的文献求助10
6秒前
6秒前
美味蟹皇堡完成签到,获得积分10
6秒前
6秒前
虚心的醉蓝应助魏大炮采纳,获得10
6秒前
玛卡巴卡完成签到,获得积分10
8秒前
啦啦啦发布了新的文献求助10
9秒前
9秒前
science HY完成签到,获得积分10
9秒前
科研通AI2S应助活力香菇采纳,获得10
9秒前
9秒前
化工人发布了新的文献求助10
10秒前
Zoe发布了新的文献求助10
10秒前
10秒前
Hello应助笨笨凡松采纳,获得10
10秒前
10秒前
10秒前
Upupupppp发布了新的文献求助10
10秒前
serpant发布了新的文献求助10
10秒前
时林发布了新的文献求助10
11秒前
11秒前
笨笨天下大同完成签到,获得积分10
11秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
中成药治疗优势病种临床应用指南 2000
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3447849
求助须知:如何正确求助?哪些是违规求助? 3043640
关于积分的说明 8995279
捐赠科研通 2732054
什么是DOI,文献DOI怎么找? 1498643
科研通“疑难数据库(出版商)”最低求助积分说明 692842
邀请新用户注册赠送积分活动 690653